Энергосбережение многоквартирного дома. От А до Е: о чем говорит класс энергоэффективности новостройки


К.т.н. В.И. Ливчак , член Экспертного совета Комитета Государственной Думы РФ по энергетике

Измерение фактического теплопотребления домов с улучшенной теплоизоляцией не показало ожидаемой экономии энергии. К сожалению, у меня это не вызвало удивления: так и должно было случиться из-за пересмотра требований СНиП отопления в 1995 г. в сторону увеличения тепловой нагрузки на отопление, пренебрежения влиянием бытовых тепловыделений в квартирах при расчете теплопотерь помещениями, игнорирования этих обстоятельств при разработке режимов эксплуатации систем отопления и неэффективности приборов индивидуального авторегулирования теплоотдачи отопительных приборов. Ниже приводятся доказательства, как имеющимися средствами добиться ожидаемого энергосбережения.

В последнее время увеличилось число зданий, оборудованных теплосчетчиками, по которым измеряется количество потребленной тепловой энергии на отопление. В домах, построенных после 2000 г., с утеплением, выполненным в соответствии с требованиями федеральных норм, расход тепловой энергии на отопление должен был бы снизиться почти на 50% по сравнению со зданиями, построенными до 1995 года - года начала принятия требований повышения теплозащиты зданий. Однако по результатам измерений оказалось, что теплопотребление уменьшилось всего на 15-20% .

В таблице 1 представлены данные фактического теплопотребления многоквартирных домов типовых серий, построенных до и после 2000 г. 1 Для удобства сравнения измеренное теплопотребление на отопление приводится в величинах удельного годового расхода тепловой энергии на отопление, отнесенного к м 2 площади квартир каждого дома и пересчитанного на градусо-сутки нормативного отопительного периода (для Москвы ГСОП = 4943 °C·сут.).

Из таблицы видно, что удельный годовой расход тепловой энергии на отопление в домах, построенных до 2000 г., в зависимости от серии составляет 190-150 кВт·ч/м 2 , снижаясь в домах, построенных после 2000 г. до 164-142 кВт·ч/м 2 , серии П44Т (из отчета) до 181 кВт·ч/м 2 , в то время как нормативное значение составляет 95 кВт·ч/м 2 , и экспертиза подтвердила, что проект соответствует нормативу.

В связи с таким расхождением некоторыми специалистами высказывается мнение, что теплопотребление завышается от того что:

  1. были неправильно определены базовые показатели удельного годового теплопотребления на отопление многоквартирных домов из-за принятия завышенных значений бытовых тепловыделений в квартирах;
  2. на 50% снижено фактическое сопротивление теплопередаче наружных стен по сравнению со значениями, заложенными в проекте. Данный факт якобы был выявлен при тепловизионном обследовании;
  3. у жильцов нет мотивации к энергосбережению из-за отсутствия индивидуальных приборов учета тепловой энергии на отопление, обязательных к установке по российскому законодательству до 1 июля 2012 г.

В отношении первого бездоказательного сомнения в рекомендуемой отечественными нормативными документами величине бытовых тепловыделений отсылаю к , где обосновываются заложенные еще в СНиП II-33-75 «Отопление...» и подтвержденные 40-летней практикой эксплуатации жилых домов удельные показатели, а также откорректированные на современные условия и приведенные в СНиП 23-02-2003 «Тепловая защита зданий», и о совпадении их с европейскими нормами ISO 13790:2008 к .

Таблица 1. Сопоставление проектных и требуемых значений удельных расходов тепловой энергии на отопление для жилых домов типовых серий за отопительный период с фактическим теплопотреблением 149-ти домов из и 42-х из - (из отчета).

Серия дома
и годы
строительства

обслед.
зданий

К зап. =
= q от.пр. р /q от.тр. р

q от.пр. год,
кВт.ч/м 2

q от.тр. год,
кВт.ч/м 2

q от.факт. год,
кВт.ч/м 2

q от.факт. год / q от.тр. год

КОПЭ/18-22,
1988-98 гг.

КОПЭ/18-22, 1984-98 гг.
(из отчета)

КОПЭ 2000, 2002-09 г.г. (из отчета)

61 / 53 = 1,15

П-3/10-17,
1990-95 гг.

П-3М/12-17,
2001-02 гг.

54 / 43 = 1,25

П-3/16, 1976-82 г.г. (из отчета)

П-3М/14-17, 2005-09 гг. (из отчета)

54 / 43 = 1,25

II-49/9, 1970г.-пр-ва ДСК-1 до серии П44

П-44/16,
1980-81 гг.

П-44/16*,
1986-90 гг.

П-44/10-17,
1991-96 гг.

П-44Т/10-17,
2001-02 гг.

77 / 51 = 1,51

П-44/16, 1982-86 гг. (из отчета)

П-44/16*, 1987-90 гг. (из отчета)

П-44/17, 1993-95 гг. (из отчета)

П-44Т/10-17, 2001-02 гг. (из отчета)

77 / 51 = 1,51

П-46/9-14,
1988-99 гг.

П-46М/7 и 12,
2001-02 гг.

65 / 47 = 1,37

Примечания.

* - так по Московскому строительному каталогу (означает 17 этажей);

жирным выделены здания, выполненные с утеплением наружной оболочки по СНиП 23-02-2003.

Второе утверждение, высказанное ГБУ ЦЭИИС, в о реальном снижении приведенного сопротивления теплопередаче стен домов, построенных после 2000 г., в частности, жилых домов типовой серии П44 на 50-60% по сравнению с заложенными в проекте, не может быть принято во внимание, потому что:

  • во-первых, тепловизионное обследование позволяет выявить только качественную картину локальных участков повышенной теплопередачи наружных ограждений, но не может оценить с достаточной точностью количественный показатель приведенного сопротивления теплопередаче фрагмента стены , и методика, которой пользуется ГБУ ЦЭИИС, не сертифицирована Росстандартом;
  • во-вторых, проектная организация ГУП «МНИИТЭП» принимала значения сопротивления теплопередаче стен домов серии П44 по заданию ОАО «ДСК-1» на основании лабораторных испытаний фрагментов стены, неоднократно проводимых ГУП «НИИМосстрой» в более стерильных условиях, чем получается при натурных испытаниях.

Методика анализа результатов натурных измерений

У тверждаю, что главным образом завышенное теплопотребление зданий связано с искусственным перегревом зданий , и авторы отчета, проводившие последние обследования, могли бы сами прийти к такому выводу, если бы при оценке теплопотребления строго следовали указаниям ГОСТ 31168-2003 «Здания жилые. Метод определения удельного потребления тепловой энергии на отопление».

Этот ГОСТ устанавливает метод определения в натурных условиях для всех построенных и эксплуатируемых жилых зданий удельного потребления тепловой энергии на отопление, включая нагрев инфильтрующегося в результате естественной вентиляции воздуха, и его сопоставление с нормируемым показателем. Для этого в соответствии с п. 9.7 результаты измерений за несколько суток или за период в месяц (для снижения влияния изменений, связанных с динамическим характером проходящих процессов теплообмена) наносят на график в прямоугольной системе координат, по оси абсцисс которого отображается разность средних за данный период температур воздуха внутри и снаружи здания, а по оси ординат - измеренный за тот же период расход тепловой энергии на отопление, отнесенный к одному часу (поделенный на число часов периода), и сравнивают с расчетной зависимостью этих же параметров, удовлетворяющей нормируемым (проектным) показателям энергоэффективности.

Расчетная зависимость строится исходя из расчетного расхода теплоты на отопление, определенного при расчетной для проектирования отопления температуре наружного воздуха без учета запаса в поверхности нагрева отопительных приборов, и с учетом увеличивающейся доли бытовых теплопоступлений в тепловом балансе дома с повышением температуры наружного воздуха согласно «Руководству по расчету теплопотерь помещений и тепловой нагрузки на систему отопления жилых и общественных зданий» Р НП «АВОК» 2.3-2012. Признавая приоритет автора и его 40-летний опыт внедрения этого решения, а также для краткости изложения, редакция журнала «АВОК» назвала такую зависимость «графиком Ливчака» (№ 1-2014 г.).

При построении этой зависимости для многоквартирных домов, запроектированных по требованиям МГСН 2.01-99 и Руководства «АВОК», нулевой расход теплоты на отопление будет при температуре наружного воздуха +12°C. Среднюю температуру воздуха внутри дома согласно п. 9.2 указанного выше ГОСТ и с учетом п. 5.1 СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование» в холодный период года следует принимать в обслуживаемой зоне жилых помещений как минимальную из оптимальных температур по ГОСТ 30494 - t вн = 20°C 2 .

Для демонстрации сказанного воспользуемся результатами испытаний, осуществленных в отопительном сезоне 2009-2010 гг. по инициативе Москомэкспертизы и Мэрии Москвы при поддержке Департамента капитального ремонта жилищного фонда г. Москвы и Префектуры ЮЗАО на 8-ми жилых домах серии II-18-01/12 по адресу ул. Обручева, в которых был выполнен комплексный капитальный ремонт, включающий утепление стен до R ст. пр = 3,06 м 2 ·°С/Вт, замену окон на более герметичные с R ок. пр = 0,55 м 2 ·°С/Вт, замену системы отопления с отопительными приборами, оборудованными термостатами, и устройство автоматизированного узла управления (АУУ) подачи теплоты в систему отопления здания.

Системы отопления заменены летом 2008-2009 гг., утепление зданий выполнено: домов 47, 49, 53, 57, 59, 61 - зимой 2008-2009 гг., 51 и 63 - зимой 2009-2010 гг. На доме 57 по ул. Обручева 18.11.2009 г. была реализована подача теплоты на отопление по расчетной зависимости, описанной выше (в показано, как пришлось при этом перенастраивать контроллер), а в домах 47, 49 и 61 той же серии контроллеры АУУ были включены на поддержание проектного графика температур, в домах 51 и 63 АУУ еще не были установлены, регулирование подачи теплоты осуществлялось в ЦТП, к которому были подключены все перечисленные здания. Результаты измерений теплопотребления системы отопления искомых домов по ул. Обручева с 1 октября по 30 апреля 2010 г. при изменении среднесуточной наружной температуры от +12,8°С до -23,1°С получены обработкой замеров домовых теплосчетчиков, распечатка которых была предоставлена «МОЭК». Результаты обработки среднемесячных показателей приводятся в сводной таблице 2 (дома 53 и 59 исключены, из-за сбоев в работе АУУ, описанных в ).

Таблица 2. Результаты обработки измерений теплопотребления системами отопления домов серии II-18-01/12 в г. Москва по ул.Обручева за отопительный период 2009-2010 гг.

Обручева, 57

Обручева, 47

Обручева 49

Обручева, 61

Обручева, 51

Обручева, 63

Октябрь,
Tн = +5,8 °С

Ноябрь,
Tн = +2,2 °С

Декабрь,
Tн = -6,5 °С

Январь,
Tн = -14,5 °С

Февраль,
Tн = -8,4 °С

Март,
Tн = -1,1 °С

Апрель,
Tн = +8,3 °С

Итого за 2009-10г.г.:

При
Tн.ср = -2,0 °С

348/118***

391/133**

430/146**

415/141**

614/209**

551/188**

Примечания:

* в числителе - измеренный расход теплоты на отопление за месяц в Гкал, в знаменателе - величина фактического теплопотребления за средний час месяца в кВт;

** в итоговой строке: в числителе фактическое теплопотребление на отопление дома за отопительный период в Гкал, в знаменателе - удельный расход тепловой энергии на отопление дома в кВт.ч/м 2 , приведенный к нормативному по СНиП 23-02-2003 отопительному периоду (ГСОП = 4943 °С.сут.);

*** если определять фактическое теплопотребление д. 57 только по периодам работы контроллера без отклонений от заданного режима, то удельный расход тепловой энергии на отопление за нормативный отопительный период составил бы 99,5 кВт.ч/м 2 .

По результатам измерений построены графики (рис.1) изменения среднечасового за каждый месяц отопительного периода фактического теплопотребления систем отопления перечисленных зданий в зависимости от разности средних за месяц температур воздуха внутри и снаружи здания согласно рекомендациям ГОСТ 31168-2003. В соответствии с МГСН 2.01-99 требуемый расчетный расход тепловой энергии на отопление и вентиляцию дома серии II-18-01/12 составит Q от.тр. р = 175,7 кВт. Данная величина рассчитана с учетом:


Рис. 1. Результаты измерения фактического теплопотребления на отопление домов серии II-18-01/12 в Москве по ул. Обручева в отопительном сезоне 2009-10 г.г. и расчетные зависимости изменения расхода тепла на отопление Qот, кВт от разности температур внутри и снаружи здания tв - tн, °С (значками результаты измерений: средние за месяц по домам 47, 49, 61, 51, 63 и за несколько суток дома 57; линиями зависимости изменения расхода тепла на отопление: 1- расчетная требуемого расхода; 2- обобщающая результаты измерения дома 57; 3 -расчетная по проекту; 4- обобщающая измерения домов 51, 63).

Проектный расчетный расход тепловой энергии на отопление и вентиляцию дома такой серии с учетом 5% надбавки к расчетным теплопотерям здания-башни (из проекта) на потери тепла трубопроводами, проложенными в неотапливаемых помещениях (остальные дополнительные и добавочные теплопотери учтены при подборе площади нагрева отопительных приборов) составляет Q от.пр. р = 195,4*1,05 = 205,2 кВт.

Соответственно расчетный запас в поверхности нагрева отопительных приборов будет К зап. = Q от.пр. р / Q от.тр. р = 205,2/175,7 = 1,17.

С учетом этого запаса были пересчитаны расчетные параметры теплоносителя в подающем и обратном трубопроводах системы отопления для установления требуемого температурного графика, задаваемого для поддержания контроллеру АУУ 3 .

На рис.1 линией 1 показана расчетная зависимость изменения расхода теплоты на отопление и вентиляцию согласно ГОСТ 31168-2003, удовлетворяющая оптимальному теплопотреблению, построенная по двум реперным точкам со следующими координатами:

  • расходу теплоты равному Q от.тр. р = 175,7 кВт при расчетной температуре наружного воздуха t н р = -26°С (в координатах t в - t н = 20 - (-26) = 46°С);
  • нулевой расход теплоты при t н = 12°С (t в - t н = 20 - 12 = 8°С).

Линией 3 - проектная зависимость изменения расхода теплоты на отопление и вентиляцию, соответствующая расчетному расходу теплоты равному Q от.пр. р = 205,2 кВт и нулевому расходу теплоты при t н = t в = 18°С (t в - t н = 20 - 18 = 2°С), на поддержание которой в соответствии с проектом был настроен контроллер в домах 47, 49, 61. Эта линия совпала с обобщающей зависимостью линейной аппроксимации фактических измерений теплопотребления этих домов на отопление за каждый месяц отопительного периода (указано на рисунке оранжевыми значками), приведенные в табл.2 по каждому дому (в знаменателе) и отнесенные к одному часу.

Зелеными треугольниками на рис.1 показаны результаты таких же измерений за меньший период в несколько суток, по возможности с исключением переходных периодов влияния динамических процессов, дома 57, настроенного на оптимальный режим работы, в то же время обеспечивающий поддержание заданной температуры внутреннего воздуха 20°С и нормативного воздухообмена. Следует отметить, что в зоне поддержания требуемого теплопотребления менее 20% от расчетного, автоматика работала неустойчиво, сбиваясь на 2-х позиционный режим работы (закрыть-полуоткрыть), что вызывало нарекание жильцов на «холодные батареи», хотя температура внутри помещений не опускалась ниже 21°С. Стрелкой показано, как после 27.03 при t н = +6°С вручную контроллер был переведен с оптимального режима работы на проектный.

Фактический расход теплоты на отопление дома 57 аппроксимируется линией 2 , которая выше расчетной зависимости, заложенной для поддержания в контроллере, на (186-175,7)*100/ 175,7 = 6%. Как оказалось позже, это было связано с инициативой жильцов по увеличению площади нагрева отопительных приборов сверх проекта, что при использовании в качестве отопительных приборов чугунных радиаторов не вызывает затруднений, так как не требует сварочных работ. Побуждения жителей вполне объяснимы: во-первых, когда у тебя под окном устанавливают меньшее количество секций радиаторов, чем было до ремонта, это справедливо вызывает недоверие, и, во-вторых, очень одиноко смотрятся 2-3 секции радиатора шириной до 0,2 м в нише под окном на кухне, имеющем ширину 1,2-1,5 м, конечно, в этом случае надо ставить прибор с меньшей теплоплотностью.

Но, поскольку увеличение площади нагрева отопительных приборов сверх проекта было выполнено жильцами только отдельных квартир, этот запас нельзя устранить централизованно. Этот перегрев будет иметь место, пока жителей, нарушивших условия совместного проживания, не обяжут восстановить систему общего пользования всего дома, какой является система отопления с отопительными приборами, в проектное состояние.

Линия 4 обобщает показатели фактического теплопотребления домов 51 и 63, в которых еще не были закончены ремонтные работы. В расчетных условиях расчетный расход теплоты на отопление превышал проектное значение домов с выполненным капитальным ремонтом на (290-205)*100/205 = 40%.

Оценка эксперимента

Перейдем к оценке эксперимента по показателю удельного годового расхода тепловой энергии на отопление, отнесенного к 1 м 2 площади квартир, символизирующего энергетическую эффективность многоквартирного дома . Как было сказано выше, нормативное значение в соответствии с требованиями МГСН 2.01-99 составляет 95 кВт·ч/м 2 , и экспертиза подтвердила, что проект соответствует нормативному требованию. По итоговой строке табл. 2 фактический удельный расход тепловой энергии на отопление дома 57, пересчитанный на нормативный по МГСН 2.01-99 и СНиП 23-02-2003 отопительный период (ГСОП = 4943 °С.сут.) составляет 118 кВт.ч/м 2 .

Если определять фактическое теплопотребление дома 57 только по периодам работы контроллера без отклонений от заданного режима длительностью в 4 месяца, то удельный расход тепловой энергии на отопление за нормативный отопительный период составил бы 99,5 кВт.ч/м 2 . А если еще учесть 6% реальное увеличение поверхности нагрева отопительных приборов по сравнению с проектом, зафиксированное соответствующими актами при обходе квартир, то фактическое теплопотребление дома было бы даже ниже норматива. Это убедительно доказывает, что нормируемое значение энергоэффективности на домах типовых серий вполне достижимо . Средний удельный годовой расход тепловой энергии на отопление по 3-м домам такой же серии, но подача теплоты в которых выполнялась на проектные параметры, составил 140 кВт.ч/м 2 или на (140-95)*100/95 = 47% больше нормативного значения. Практически такой же результат, как и приведенный в табл.1.

Любопытно, что в следующем отопительном сезоне 2010-11 гг. Москомэкспертизу отстранили от продолжения эксперимента, несмотря на то, что она передала документацию на расширение его на все 8 домов, разработала методику настройки контроллеров АУУ и циркуляционных насосов отопления, предложила в качестве расширения эксперимента с целью достижения экономии энергии на горячее водоснабжение перенести узел приготовления горячей воды из ЦТП в жилые дома. Но все тщетно -эксперимент был заброшен. В результате фактический удельный расход тепловой энергии на отопление за 2010-2011 гг. дома 57, пересчитанный на нормативный отопительный период (для корректности сравнения), составил 148 кВт.ч/м 2 , домов 47, 49, 61 - 182 кВт.ч/м 2 , домов 51, 63 - 202 кВт.ч/м 2 . Температура обратной воды в этих же домах почти везде завышена более чем на 10°C, что очень много, и свидетельствует о том, что циркуляционные насосы отопления работали на избыточной скорости. В доме 57 вообще не понятно, как работал регулятор: независимо от изменения температуры наружного воздуха от 3,8 до -11°C расход теплоты практически не менялся.

Выводы

Основываясь на полученных результатах, можно сделать вывод о явном пренебрежении энергосбережением при эксплуатации жилищного фонда города. Это нельзя отнести к случайности, поскольку уже было продемонстрировано в предыдущем отопительном сезоне, как правильной настройкой контроллера АУУ можно достичь расчетной экономии теплоты на отопление .

Если мы действительно хотим сберегать энергию, необходимо оптимизировать настройку контроллеров и режима работы циркуляционного насоса отопления в смонтированных АУУ, установить их во всех жилых домах, построенных после 2000 года, и реально начать перенос узлов приготовления горячей воды из ЦТП в ИТП, что значительно снизит потери теплоты в системе ГВС и электроэнергии на перекачку горячей воды.

Это надо сделать в первую очередь в зданиях, построенных после 2000 г., потому что результаты сопоставления фактического теплопотребления жилых зданий основных типовых серий с их проектными значениями и требуемыми, рассчитанными по единой методике, приведенные в табл.1, оказались довольно неожиданными: фактическое теплопотребление зданий, запроектированных до 2000 г., ниже ожидаемого проектного значения более чем на 20%, но близко к требуемому, а после 2000 г., несмотря на наличие в системе отопления термостатов, превышает требуемое на 40-60%. Расчетная проектная теплопроизводительность системы отопления значительно превышает требуемую, исходя из обеспечения комфортного микроклимата и нормативного воздухообмена в квартирах. Это свидетельствует о необходимости пересмотра существующей методики расчета систем отопления на рекомендуемую в Р НП «АВОК» Р НП «АВОК» 2.3-2012.

Графическим подтверждением служит рис. 2, где представлены во времени графики изменения удельного расхода тепловой энергии на отопление за отопительный период:

1 - проектный, построенный исходя из заданной проектом расчетной нагрузки с изменением ее в зависимости от наружной температуры в соответствии с Приложением 22 СНиП 2.04.07-86 «Тепловые сети», как и в графике 3 рис.1, (синяя линия). Расчетная нагрузка взята из проекта или из территориального строительного каталога плюс семипроцентная надбавка для многосекционных зданий на потери теплоты разводящими трубопроводами, проложенными в неотапливаемых помещениях, от узла ввода;

2 - требуемый, построенный исходя из достигнутой величины сопротивления теплопередаче наружных ограждений, обеспечения нормативного воздухообмена в квартирах и с учетом теплопоступлений с внутренними (бытовыми) тепловыделениям в объеме 85% от расчетной величины, но без учета теплопоступлений с солнечной радиацией, как и в графике 1 рис.1, (бордовая линия);

3 - фактического теплопотребления системой отопления из (зеленая линия), измеренного теплосчетчиком и пересчитанного на нормативное значение градусо-суток отопительного периода.


Рисунок 2. Удельный расход тепловой энергии на отопление за отопительный период в зданиях серий II-49 и П-44, кВт.ч/м 2

Из рис. 2 и табл.1 видно, что:

1. До выхода СНиП II-33-75 проектный и требуемый удельный расход тепловой энергии на отопление за отопительный период были близки (серии II-49 и II-57). Это обусловлено тем, что при расчете системы отопления до 1975-го года не учитывались бытовые теплопоступления, а теплопотери с инфильтрацией принимались всего в размере 8% от теплопотерь через наружные ограждения.

2. В последующие за 1975-м годом проектный расход за отопительный период на 25-30% превышал требуемый. Это происходило из-за учета при определении последнего увеличивающейся в тепловом балансе дома доли бытовых теплопоступлений с повышением температуры наружного воздуха выше расчетной, 3.По проектам 2000 г., в которых была резко повышена теплозащита ограждений, превышение проектного расхода теплоты на отопление за отопительный период над требуемым составило для серии П-3М - 146 / 86 = 1,7 раза, П-46М - 175 / 97 = 1,8 раза, П-44Т - 212 / 105 = 2 раза.

Сравнение выполнено по теплопотреблению за отопительный период, а не по расчетным значениям из-за того, что измерение потребленного количества энергии может проводиться только за определенный период времени. Это же подтверждается таблицей 1, где приводится сопоставление проектных и требуемых удельных расходов тепловой энергии на отопление за отопительный период жилых домов типовых серий с фактическим теплопотреблением, пересчитанным на нормативное значение градусо-суток отопительного периода из , куда включены также результаты измерения из отчета ГУП «НИИМосстрой» .

В отношении расчетного расхода тепловой энергии на отопление, определенного при расчетной для проектирования отопления температуре наружного воздуха, следует заметить, что в домах, запроектированных после 1975-го года, наблюдается запас теплопроизводительности системы отопления, составляющий 7-11%, а в домах после 2000 года, когда резко повысились требования к повышению теплозащиты зданий, запас возрос на 25% в серии П-3М, на 37% в серии П-46М и до 51% в серии П-44Т (3-я колонка табл.1). Вот этот запас и вызывает перерасход тепловой энергии на отопление, если он не учитывается при настройке контроллера автоматического регулятора подачи теплоты на отопление и выборе производительности циркуляционного насоса, а принятые величины бытовых теплопоступлений еще раз подтверждены сходимостью результатов испытаний и расчетов.

Причем, как было показано в , ни термостаты на отопительных приборах, ни балансировочные клапаны в основаниях стояков системы отопления не влияют на повышение энергоэффективности зданий - только принудительное выведение системы отопления на оптимальный режим работы контроллером АУУ или ИТП. Обратите внимание, когда производители термостатов указывают на проценты энергосбережения от их установки, в схеме всегда присутствует АУУ, который на самом деле и обеспечивает эту экономию. В приведен рисунок, демонстрирующий, что вначале АУУ работал в рабочем режиме, фактический расход теплоты на отопление соответствовал требуемому, но потом автоматика АУУ была отключена, расход теплоносителя на отопление увеличился почти в 2 раза, расход теплоты, потребляемый системой отопления, вырос на 40-50% по сравнению с требуемым - термостаты не смогли снять этот перегрев. И только, когда вновь была включена автоматика на АУУ, теплопотребление восстановилось до проектного.

Заключение

При совпадении интересов жителей, управляющей компании и теплоснабжающей дома организации вложения, сделанные в комплексный капитальный ремонт, окупятся за разумные сроки, а в новом строительстве можем быть уверены, что задание по повышению энергетической эффективности зданий малозатратно и в намеченные Правительством России (ППР-№18 от 25 января 2011г) сроки вполне выполнимо. Получаемое в большинстве натурных измерений завышенное теплопотребление на отопление жилых домов энергоэффективных типовых серий по сравнению с проектом связано не с ошибками проектирования и монтажа, а с неправильной настройкой контроллера, управляющего подачей теплоты на отопление в АУУ или ИТП, и неправильным выбором числа оборотов циркуляционного (циркуляционно-подмешивающего) насоса отопления. В статье приводится пример, как можно в условиях эксплуатации при наличии ИТП или АУУ без дополнительных материальных затрат добиться снижения завышенного теплопотребления многоквартирного дома до нормативных значений.

Примечания:

1 Измерения в 149 домах выполнены НП «АВОК» в 2008 г. , в 42 доме в 2009-2011 гг. взяты из отчета (в таблице 1 помечены словами «из отчета»).

3 Подробно, почему в проекте оказался скрытый запас, как рассчитать оптимальный график подачи теплоты и как на поддержание его настроить контроллер, изложено в .

Литература

1. Матросов Ю.А., Ливчак В.И., Щипанов Ю.Б. Энергосбережение в зданиях. Новые МГСН 2.01-99 требуют проектирования энергоэффективных зданий. «Энергосбережение», №2-1999г.

2. Ливчак В.И. Обоснование расчета удельных показателей расхода тепла на отопление разноэтажных жилых зданий. «АВОК», №2-2005г.

3. Ливчак В.И. Фактическое теплопотребление зданий, как показатель качества и надежности проектирования. «АВОК», №2-2009г.

4. Отчет ГУП «НИИМосстрой» Анализ энергопотребления введенных в эксплуатацию жилых зданий. 2013г., результаты которого доложены 22.05.14 на заседании секции «Энергоэффективное домостроение» Объединенного научно-технического совета по вопросам градостроительной политики и строительства г. Москвы, по теме Причины повышенного энергопотребления эксплуатируемых жилых домов

5. Ливчак В.И. Учет внутренних теплопоступлений в жилых домах. «АВОК», №6-2013г.

6. Ливчак В.И. Гармонизация исходных данных российских норм, определяющих величину внутренних теплопоступлений, с европейскими нормами. «АВОК», №1-2014г.

7. Ливчак В.И. Тепловизионное обследование не может заменить тепловые испытания зданий. «Энергосбережение», №5-2006.

8. Ливчак В.И. Реальный путь повышения энергоэффективности за счет утепления зданий. «АВОК», №3-2010г.

9. Ливчак В.И., Забегин А.Д. Преодоление разрыва между политикой энергосбережения и реальной экономией энергоресурсов. «Энергосбережение», №4-2011г.

10. Ливчак В.И. Сомнения в обоснованности энергоэффективности некото рых принципов автоматизации систем водяного отопления. «Новости теплоснабжения», №6-2012г.

Что такое энергоэффективность? Это рациональное использование хозяйственным предприятием, жилым домом энергетических ресурсов. Иными словами, меньшее потребление электричества и тепла, чем прежде, но с сохранением того же уровня энергообеспечения технопроцессов или объектов недвижимости. Для более подробного и полного отображения степеней энергопотребления в России были введены классы энергоэффективности дома. Этот показатель прежде всего демонстрирует, насколько отклоняется от нормы удельный расход электричества, тепла.

Класс энергоэффективности дома - что это?

Мы установили, что энергетическая эффективность - это экономное применение комплекса энергоносителей. Иными словами, сокращение объема используемых ресурсов за счет модернизации качественных норм их применения.

Энергосбережение и энергоэффективность - не одно и то же! Первое понятие - сокращение использования энергоресурсов. Второе - более правильное и разумное их применение.

Что касается классов энергоэффективности в России, то на сегодня выделены следующие:

Самый высокий класс - это А. Жители домов такого типа потребляют минимальное количество энергии, обеспечивая при этом нормальную жизнедеятельность. Чем это хорошо собственникам жилья? Снижением затрат на коммунальные услуги. А в целом для страны, для всей планеты - улучшением экообстановки. Чем меньше энергоресурсов затрачиваются, тем меньше вредных выбросов от ГЭС, ТЭС, АЭС и проч.

Кстати, в классификации учитываются затраты энергии не только на личные, но и на общедомовые нужды. Подобная модель экономии не нова - она уже десятилетия используется в развитых странах мира. Именно на основе общемирового образца и был построен российский.

Как присваиваются классы жилым строениям?

На основе чего определяется класс энергоэффективности жилого дома? База - показатели потребления энергоресурсов за текущий год. Далее эксперт сравнивает их с аналогичной информацией за прошлый год. На основе этого анализа уже и определяется класс энергоэффективности жилого дома. Также исследование помогает ответить и на следующие вопросы:


В будущем планируется заводить на каждое жилое здание свой энергопаспорт. В него будут вноситься все данные об использовании энергетических ресурсов. Труд совсем не напрасный - при грамотном подходе жильцы могут сэкономить до 30 % от суммы "платежки" за ЖКХ.

Законодательное регулирование

Определение класса энергоэффективности многоквартирного дома - процедура, регулируемая комплексом законодательных актов:


Таблица классов энергетической эффективности

Теперь подробнее раскроем главную тему. Чтобы определить класс энергоэффективности дома, нужно быть в курсе кратких требований к каждому из них.

Класс Наименование Отклонение расхода на теплоэнергию (вентиляция, отопление) от нормы. Включительно, в процентах (%) Мероприятия для повышения энергоэффективности
Планирование, эксплуатация реконструируемых и новых строений
А++ Самый высокий Ниже минус 60 Приемы экономического стимулирования
А+ Минус 50 - минус 60
А Минус 40 - минус 50
В+ Высокий Минус 30 - минус 40
В Минус 15 - минус 30
С+ Нормальный Минус 5 - минус 15
С Плюс 5 - минус 5 Мероприятия не разрабатываются
С- Плюс 5 - плюс 15
Эксплуатация уже имеющихся строений
D Пониженный Плюс 15,1 - плюс 50 Реконструкция на базе экономического обоснования
Е Самый низкий Более плюс 50 Выбор между реконструкцией на основе должного обоснования и сносом здания

Теперь перейдем к раскрытию некоторых особенностей перечисленных классов.

Подробности и объяснения

Сегодня недопустимо проектировать дома с классом энергоэффективности D или Е. Категории А-С присваиваются зданиям на стадии проектирования или реконструкции, в отношении строящихся объектов. Затем, когда помещение вводится в эксплуатацию, класс уточняют в результате проведения энергетических экспертиз, анализов. Для повышения доли категорий А-В государству на уровне субъектов стоит экономически стимулировать застройщиков.

Зданию может быть присвоен класс энергоэффективности дома B, А на стадии проекта, если в последнем предусмотрены следующие мероприятия:

Необходимые данные для определения класса

Чтобы узнать класс энергоэффективности дома, специалисту нужно обладать следующей информацией:

  • Удельная потеря тепловой энергии через стены строения, степень герметичности здания.
  • Объем теплоэнергии, необходимой для отопления помещений.
  • Технохарактеристики вентиляционной системы.
  • Теплопоказатели перегородок между энергопотребителями с автономной системой.
  • Показатели индикаторов энергоэффективности (горячей годы, охладительных, отопительных, вентиляционных систем).

Ошибочно полагать, что определение класса энергоэффективности - долгий процесс. Специалисты выполняют такого рода анализ в весьма сжатые сроки.

Способы аудита энергоэффективности сооружений

Расчеты, необходимые для определения класса строения, - один из этапов комплексного энергетического мониторинга. В него также входят обследования, разработка программ по энергосбережению, воплощение их в жизнь. Перечень критериев для расчетов может включать в себя до 80 пунктов!

Аудит энергоэффективности - это четыре основных способа:

Как присваиваются данные классы?

Мы разобрали, как узнать класс энергоэффективности дома. Не менее важно разбираться и в процессе его присвоения. Класс назначается на основе энергодекларации органами Госстройнадзора. Его присвоение запрещено для следующих объектов:

  • Культовые сооружения.
  • Объекты исторического, культурного наследия.
  • Временные постройки (до 2-х лет).
  • Индивидуальные частные дома, садовые и огородные постройки.
  • Строения с общим метражом менее 50 м 2 .
  • Иные сооружения, определенные законодательством РФ.

Присвоение дому класса энергоэффективности правомочно для всех других строений. Процедура обязательна в отношении возведенных, реконструируемых, отремонтированных, эксплуатируемых МКД (многоквартирных домов). А также в отношении строений, за которыми осуществляется государственный стройнадзор. Применительно других сооружений - добровольная основа.

Кто устанавливает и присваивает классы?

Определения класса энергоэффективности многоквартирного дома - прерогатива энергоаудиторских специализированных предприятий. В своих действиях они основываются на ФЗ № 261.

А право присвоения класса энергоэффективности - исключительное. Им обладают только органы строительного государственного надзора.

Таблички с классом энергоэффективности

Как быстро узнать класс энергетической эффективности простому гражданину? Достаточно обратиться к табличке, которой застройщик должен оборудовать фасад каждого введенного в эксплуатацию дома. Собственники помещения обязаны заботиться о ее надлежащем состоянии, обновлении информации.

Точное расположение - левый угол дома, 30-50 см от края, 2-3 метра от земли. На таблице указана надпись "Класс энергоэффективности", его буква (от А до Е) и описание категории (высшая, нормальная, низшая и проч.).

На этом завершаем знакомство с новым для отечественной реальности явлением. Определение класса энергоэффективности дома - дополнительный способ сэкономить на оплате услуг ЖКХ собственникам квартир в МКД.

Законом РФ «Об энергосбережении и о повышении энергетической эффективности …»

Установлены правовые, экономические и организационные основы стимулирования энергосбережения и повышения энергетической эффективности.

Законом предусмотрено установление правил определения классов энергетической эффективности товаров, многоквартирных домов, определение требований энергетической эффективности зданий, строений, сооружений, установление принципов определения перечня обязательных мероприятий по энергосбережению и повышению энергетической эффективности в отношении общего имущества собственников помещений в многоквартирном доме.

Особое внимание уделяется разработке и реализации на различных уровнях программ в области энергосбережения и повышения энергетической эффективности зданий и сооружений. При составлении таких программ необходимо учитывать показатели энергоэффективности объекта в целом, показатели энергоэффективности для архитектурно-планировочных решений, показатели энергоэффективности для элементов объекта и конструкций, а так же материалов и технологий, применяемых при капремонте.

Собственники помещений в многоквартирных домах обязаны в течение всего срока их эксплуатации обеспечивать соответствие многоквартирных домов установленным требованиям энергетической эффективности и требованиям их оснащенности приборами учета используемых энергетических ресурсов, проводить мероприятия по энергосбережению и повышению энергетической эффективности многоквартирного дома, нести расходы на проведение указанных мероприятий. Один раз в пять лет показатели энергоэффективности должны пересматриваться в направлении улучшения.

Лицо, ответственное за содержание многоквартирного дома, регулярно (не реже чем один раз в год) обязано разрабатывать и доводить до сведения собственников помещений в многоквартирном доме предложения о мероприятиях по энергосбережению и повышению энергетической эффективности, которые возможно проводить в многоквартирном доме, с указанием расходов на их проведение, объема ожидаемого снижения используемых энергетических ресурсов и сроков окупаемости предлагаемых мероприятий.

Краткий состав мероприятий по повышению энергоэффективности многоквартирного дома.

Повышение теплового сопротивления ограждающих конструкций.

Облицовка наружных стен, технического этажа, кровли, перекрытий над подвалом теплоизоляционными плитами (пенопласт под штукатурку, минераловатные плиты, плиты из вспененного стекла и базальтового волокна) (уменьшение потерь тепла до 40%);

Устранение мостиков холода в стенах и в примыканиях оконных переплетов (2-3%); Устройство в ограждениях/фасадах прослоек, вентилируемых отводимым из помещений воздухом;

Применение теплозащитных штукатурок;

Уменьшение площади остекления до нормативных значений;

Остекление балконов и лоджий (10-12%);

Замена /применение современных окон с многокамерными стеклопакетами и переплетами с повышенным тепловым сопротивлением;

Применение окон с отводом воздуха из помещения через межстекольное пространство (4-5%);

Установка проветривателей и применение микровентиляции;

Применение теплоотражающих /солнцезащитных стекол в окнах и при остеклении лоджий и балконов;

Остекление фасадов для аккумулирования солнечного излучения (от 7 до 40%);

Применение наружного остекления имеющего различные характеристики накопления тепла летом и зимой;

Установка дополнительных тамбуров при входных дверях подъездов и в квартирах;

Регулярная очистка стекол окон и применение светлых тонов при окраске стен в местах общего пользования;

Регулярное информирование жителей о состоянии теплозащиты здания и мерах по экономии тепла.

2. Повышение энергоэффективности системы отопления.

Замена чугунных радиаторов на более эффективные алюминиевые;

Установка термостатов и регуляторов температуры на радиаторы;

Применение систем поквартирного учета тепла (теплосчетчики, индикаторы тепла, температуры);

Реализация мероприятий по расчету за тепло по количеству установленных секций и месту расположения отопителей;

Установка теплоотражающих экранов за радиаторами отопления (1-3%);

Применение регулируемого отпуска тепла (по времени суток, по погодным условиям, по температуре в помещениях);

Применение контроллеров в управлении работой теплопункта;

Применение поквартирных контроллеров отпуска тепла;

Сезонная промывка отопительной системы;

Дополнительное отопление и подогрев воды при применении солнечных коллекторов и тепловых аккумуляторов;

Использование неметаллических трубопроводов;

Использование эффективной теплоизоляции трубопроводов в подвальном и чердачном помещении дома;

Переход при ремонте к схеме индивидуального поквартирного отопления;

Регулярное информирование жителей о состоянии системы отопления, потерях и нерациональном расходовании тепла и мерах по повышению эффективности работы системы отопления.

3. Повышение качества вентиляции. Снижение издержек на вентиляцию и кондиционирование.

Применение автоматических гравитационных систем вентиляции;

Установка проветривателей в помещениях и на окнах;

Применение систем микровентиляции с подогревом поступающего воздуха и клапанным регулированием подачи;

Исключение сквозняков в помещениях;

Применение в системах активной вентиляции двигателей с плавным или ступенчатым регулированием частоты;

Применение контроллеров в управлении вентиляционных систем;

Применение водонаполненных охладителей в ограждающих конструкциях для отвода излишнего тепла;

Подогрев поступающего воздуха за счет охлаждения отводимого воздуха;

Использование тепловых насосов для выхолаживания отводимого воздуха;

Использование реверсивных тепловых насосов в подвалах для охлаждения воздуха, подаваемого в приточную вентиляцию;

Регулярное информирование жителей о состоянии вентиляционной системы, об исключении сквозняков и непроизводительного продува помещений дома, о режиме комфортного проветривания помещений.

4. Экономия воды (горячей и холодной).

Установка общедомовых счетчиков горячей и холодной воды;

Установка квартирных счетчиков расхода воды;

Установка счетчиков расхода воды в помещениях, имеющих обособленное потребление;

Установка стабилизаторов давления (понижение давление и выравнивание давления по этажам);

Теплоизоляция трубопроводов ГВС (подающего и циркуляционного);

Подогрев подаваемой холодной воды (от теплового насоса, от обратной сетевой воды и т.д.);

Установка экономичных душевых сеток;

Установка в квартирах клавишных кранов и смесителей;

Установка шаровых кранов в точках коллективного водоразбора;

Установка двухсекционных раковин;

Установка двухрежимных смывных бачков;

Использование смесителей с автоматическим регулированием температуры воды;

Регулярное информирование жителей о состоянии расхода воды и мерах по его сокращению.

5. Экономия электрической энергии.

Замена ламп накаливания в подъездах на люминесцентные энергосберегающие светильники;

Замена применяемых люминесцентных уличных светильников на натриевые и металлогалогенные или на светодиодные светильники;

Использование светильников с отражателями;

Применение фотоакустических реле для управляемого включения источников света в подвалах, технических этажах и подъездах домов;

Применение аппаратуры для зонального отключения по уровням освещенности;

Применение автоматических выключателей для дежурного освещения;

Регулярная очистка прозрачных элементов светильников и датчиков автоматического отключения;

Применение систем микропроцессорного управления частотно-регулируемыми приводами электродвигателей лифтов;

Установка компенсаторов реактивной мощности;

Применение энергоэффективных циркуляционных насосов, частотно-регулируемых приводов;

Пропаганда применения энергоэффективной бытовой техники класса А+, А++;

Использование солнечных батарей для освещения здания;

Регулярное информирование жителей о состоянии электропотребления, способах экономии электрической энергии, мерах по сокращению потребления электрической энергии на обслуживание общедомового имущества.

6. Экономия газа.

Применение программируемого отопления в квартирах;

Использование в быту энергоэффективных газовых плит с керамическими ИК излучателями и программным управлением;

Вместе со всем этим необходимо отметить, что не существует одного волшебного средства, позволяющего резко повысить энергоэффективность и комфорт многоквартирного дома. Здесь действуют два основных принципа: «всего понемногу» и целесообразность, связанная с окупаемостью. В целом, вполне реально в 4 раза снизить издержки на энергообеспечение всего здания и соответствующие затраты всех проживающих в доме жителей.

Описание:

Энергетические характеристики зданий, установленные приказом № 262 Минрегионразвития РФ «О требованиях энергетической эффективности зданий, строений, сооружений», на первый взгляд менее эффективны по сравнению с их европейскими аналогами. Однако простое сопоставление значений из-за различных климатических и нормируемых условий проживания некорректно. В статье проводится сравнительный анализ требований энергоэффективности строений Дании и России и предлагается последовательность в исполнении этих требований для Российской Федерации.

Последовательность в исполнении требований повышения энергоэффективности многоквартирных домов

Физико-механические показатели выпускаемых автоклавных газобетонов

Сравнение фактического теплопотребления зданий (по замерам теплосчетчиков) с требуемым (по данным энергетических паспортов этих зданий) выявило, что теплопотери жилых зданий нового строительства начиная с 2000 года и после комплексного капитального ремонта должны были бы снизиться более чем в 2 раза за счет их утепления, замены окон на энергоэффективные и установки термостатов на отопительные приборы.

На самом деле снижение теплопотребления на отопление составило только 1/3 от потенциальной экономии за счет утепления зданий, остальные 2/3 выбрасываются на улицу в прямом и переносном смысле из-за завышенной теплопроизводительности системы отопления по причинам, указанным в , и в связи с неправильной настройкой термостатов. Причем там же в приведены замеры температур воздуха в квартирах перетапливаемых домов на уровне 23–25 °С, подтверждающие, что перерасход теплоты на отопление связан не с дефектами строительства, а с отсутствием элементарного контроля за теплопотреблением и ненацеленностью эксплуатационных служб на энергосбережение.

Устранить перерасход тепла системой отопления, запроектированной с запасом, возможно путем регулирования подачи тепла на отопление по скорректированному температурному графику (в сторону его уменьшения с учетом выявленного запаса системы отопления). Реализация такого графика возможна в котроллере автоматизированного узла управления системой отопления (АУУ), установка которого входит в состав работ комплексного капитального ремонта жилых домов, или ИТП в домах нового строительства, где они установлены.

С учетом выявленного запаса в системе отопления, который определяется отношением проектного расчетного расхода тепла на отопление и вентиляцию Q р пр (из раздела «ОВ») к требуемому Q р тр (из энергетического паспорта K зап = Q р пр /Q р тр), должны быть пересчитаны расчетные значения температур теплоносителя в подающем и обратном трубопроводах системы отопления :

t 1тр = t в р + 0,5 (t 1 р - t 2 р)(Q - 0 /K зап) + [(t 1 р + t 2 р) / 2 - t в р ](Q - 0 / K зап) 1 / (1 + m) , (1)

t 2тр = t 1тр - (t 1 р - t 2 р)(Q - 0 / K зап), (2)

где t в р – расчетная температура воздуха в помещении (принимая tвр для расчета графиков по СНиП 41-02–2003 «Тепловые сети» равной 18 °С);

t 1 p , t 2 p – расчетная температура соответственно в подающем и обратном трубопроводах системы отопления, °С;

Q - 0 – относительный расход тепловой энергии на отопление, представляющий отношение требуемых расходов тепловой энергии на отопление, определенных при текущей температуре наружного воздуха t н и расчетной для проектирования отопления t н р;

m – показатель степени в формуле определения коэффициента теплопередачи отопительных приборов; как правило, принимают равным 0,25.

Чтобы установить значение требуемой температуры теплоносителя, при расчетной наружной температуре (t н р), необходимо подставить Q - 0 = 1. Выполненные расчеты показывают, что, например, при завышении поверхности нагрева отопительных приборов на 20 % расчетные параметры теплоносителя, циркулирующего в системе отопления, должны составлять 84–63 °C вместо 95–70 °C в системе без запаса.

Но пересмотрены должны быть не только расчетные параметры теплоносителя, но и их изменение в зависимости от температуры наружного воздуха.

Следует учитывать, что с повышением наружной температуры доля бытовых тепловыделений в тепловом балансе жилого дома увеличивается, за счет чего можно сократить подачу тепла на отопление. Нулевой расход тепла на отопление будет уже не при t н = 18–20 °С, как принято при построении стандартных графиков регулирования, а, как показывают расчеты, в домах без утепления при t н = 15 °С и в утепленных домах при t н = 12 °С. Зависимость относительного расхода тепла на отопление от текущей наружной температуры при этом в формулах (1) и (2) находится из следующего уравнения:

Q - о = [(Q o p + Q вн)(t в - t н) / (t в - t н р) - Q вн ] / Q o p =
= (1 + Q вн / Q o р)(t в - t н) / (t в - t н р) - Q вн / Q o р, (3)

где Q о р – расчетный расход тепла на отопление при t н р, Гкал;

Q вн – бытовые тепловыделения, учитываемые при определении Q o р, Гкал.

Результаты испытаний на одном из жилых домов серии II-18-01/12, где реализован предлагаемый график при настройке контроллера АУУ, приведены в и табл. 2. В итоге была достигнута экономия тепла на отопление в 45 % по сравнению с этим же домом до выполнения комплексного капитального ремонта и с аналогичными домами, в которых не было выполнено утепление.

В аналогичных домах, где был выполнен капитальный ремонт, установлены АУУ, но контроллер был настроен на поддержание проектного графика 95–70 °С с нулевым расходом тепла при t н = 18 °С, перерасход тепла по сравнению с предлагаемым выше режимом составил 28 % (см. табл. 2).

Приведенные данные свидетельствуют о том, что для повышения энергоэффективности существующих зданий, построенных после 1979 года (см. таблицу и графики, демонстрирующие превышение проектного расхода тепла на отопление над требуемым по энергетическому паспорту в ), необходимо устанавливать автоматизированный узел управления системой отопления, настраивая контроллер на предложенный режим работы с корректировкой расчетных параметров теплоносителя (с учетом запаса в системе отопления) и графика подачи тепла (с учетом увеличивающейся доли бытовых тепловыделений в тепловом балансе дома с повышением температуры наружного воз-духа).

Дома, построенные до 1980 года, входят в программу комплексного капитального ремонта, в составе которого предусмотрена установка АУУ.

Если минимизировать затраты на АУУ в соответствии с рекомендациями «Свода правил по проектированию тепловых пунктов» (СП 41-101–95), исключив из Типового альбома расчета и привязки АУУ, разработанного ГУП «МосжилНИИпроект»:

  • резервный циркуляционный насос;
  • излишние импортные гидравлические регуляторы;
  • высокотемпературный дренажный насос (в 50 раз превышает стоимость общепринятого переносного откачивающего насоса «Гном»);
  • дорогостоящие мероприятия по снижению уровней шума и вибрации от работы насосного оборудования 2 ,

то устройство АУУ окупится в первый же год эксплуатации. Но проекты привязки АУУ необходимо дополнить расчетом требуемого для каждой серии дома конкретного температурного графика подачи тепла на отопление и настройки числа оборотов насоса в зависимости от отклонения температуры обратной воды от рассчитанного графика.

К сожалению, следует констатировать, что в настоящее время в Москве отсутствует программа по устройству АУУ в существующих домах жилищного фонда. Также не реализуется «Комплексная модернизация тепло- и водоснабжения зданий с установкой автоматизированных индивидуальных тепловых пунктов (ИТП) и ликвидацией ЦТП», включенная как основное мероприятие Городской целевой программы «Энергосбережение в г. Москве на 2009–2011 годы и на перспективу до 2020 года», принятой Постановлением Правительства Москвы № 1012-ПП от 28 октября 2008 года. А это как раз те мероприятия, которые повторяются в приказе № 262, как позволяющие повысить энергетическую эффективность зданий и сооружений на первом этапе внедрения, и их целесообразно, по возможности, выполнять совместно, чтобы два раза не резать одни и те же трубопроводы.

Подтверждением сказанного служат представленные в табл. 2 результаты натурных испытаний. Из табл. 2 следует, что в среднем по восьми домам за октябрь–апрель 2009–2010 годов (212 сут.) теплопотребление на горячее водоснабжение составило 254,6 Гкал, или за сутки Q hw = 254,6 / 212 = 1,201 Гкал/сут., а водопотребление – 104 л/чел. в средние сутки отопительного периода. Отсюда можно установить фактическое значение коэффициента, учитывающего потери теплоты трубопроводами систем горячего водоснабжения, из формулы (1) прил. 2 в :

β hl = Q hw 10 6 / [(t h - t c) a n c]-1 = 1,201 10 6 / [(55-5) 104 160 1]-1 = 0,444,

где t h , t c – соответственно средняя температура горячей воды в точках водоразбора, t h = 55 °С, и холодной воды за отопительный период, t c = 5 °С;
а – уровень среднесуточного водопотребления на человека, а = 104 л/сут. (из табл. 2);
n – количество жителей в доме, n = 160 чел. (из табл. 2);
с – теплоемкость воды, 1 ккал/(кг °С).

Полученный из фактического теплопотребления коэффициент теплопотерь трубопроводами

β hl = 0,444 оказался выше рекомендуемого в табл. 1 прил. 2 в для систем горячего водоснабжения с полотенцесушителями и неизолированными стояками, подключенных к ЦТП, β hl рек. = 0,35, и вызвано завышенным объемом циркуляции – фактическая циркуляция превышала среднесуточный водоразбор в 7–10 раз, в то время как по расчету она должна быть примерно равна ему.

Перенос водонагревателей горячего водоснабжения в ИТП зданий резко сократит теплопотери трубопроводами горячего водоснабжения за счет отказа от внутриквартальных сетей и сокращения избыточной циркуляции за счет приближения узла нагрева воды к месту ее потребления. Согласно табл. 1 прил. 2 в , коэффициент теплопотерь трубопроводами системы горячего водоснабжения с изолированными стояками, подключенными к ИТП, β hl рек. = 0,2. Тогда притом же водопотреблении 104 л/чел. сут. теплопотребление дома на горячее водоснабжение составит в сутки отопительного периода:

Q hw = 104 160 (1 + 0,2) (55 - 5) 1 10 -6 = 0,998 Гкал/сут.

Удельный расход тепловой энергии на горячее водоснабжение при β hl = 0,44 и β hl = 0,2 (из формул (5.13 и 5.14) в ) с учетом выключения системы на ремонт на 14 сут. в году (351 рабочих суток), длительности отопительного периода 214 сут., коэффициента снижения уровня водоразбора в летнее время 0,8, температуры холодной воды в летнее время 15 °С и площади квартир дома

А h = 3 618 м 2 , соответственно, будет:

Сокращение потерь тепла составит: (122,7 - 99,4) 100 / 122,7 = 19 %, и будет достигнут требуемый с 2011 года диапазон удельного теплопотребления по приказу № 262.

Многими возлагаются большие надежды на достижение энергосбережения, когда жителю будут предоставлены контроль и возможность управления потреблением энергии на отопление. Во исполнение этой задачи в Федеральном законе от 23 ноября 2009 года № 261-ФЗ «Об энергосбережении и о повышении энергоэффективности…» ставится цель оснастить индивидуальными приборами учета используемой тепловой энергии многоквартирных домов, вводимых в эксплуатацию с 1 января 2012 года.

Решение данной задачи возможно:

  • устройством в домах квартирных систем отопления с горизонтальной разводкой и подключением к двухтрубным вертикальным стоякам с измерением потребляемого расхода тепловой энергии индивидуальным теплосчетчиком;
  • сохранением вертикально-однотрубных (в домах типовых серий) или двухтрубных систем отопления с общедомовым теплосчетчиком на вводе системы отопления и теплоизмерителями на каждом отопительном приборе, служащих для распределения измеренного общедомовым теплосчетчиком расхода тепловой энергии по квартирам в зависимости от показаний этих измерителей, не являющихся коммерческими приборами.

В обоих решениях управление теплопоступлением передается термостатам, устанавливаемым на каждом отопительном приборе. Однако, как показано в , на практике термостаты не справляются с функцией энергосбережения – они не сокращают расход теплоты на отопление при перегреве зданий.

Вызвано это тем, что в системе отопления устанавливаются термостатические головки с максимальным пределом температурной настройки в 26 °С. Это означает, что при полном открытии клапана (а менталитет российского жителя оказался таков, что он не ищет промежуточных положений, тем более что терморегуляторы не оцифрованы по градусам температуры), он не будет автоматически закрываться, пока температура в помещении не превысит 26 °С. Естественно, даже самые теплолюбивые жильцы воспринимают такую температуру как избыточную и раскрывают окна, сбрасывая тепло на улицу.

Причем в исследуемом доме были установлены не только термостаты, но и упоминающиеся выше теплоизмерители на каждом отопительном приборе, и жильцы были обучены правильному обращению с этой техникой, но положительный эффект пока не достигнут.

Поскольку существует цель добиться реального энергосбережения при обеспечении комфортных условий пребывания жителей в отапливаемых помещениях, необходимо установить ограничение открытия термостата, чтобы температура воздуха в регулируемом помещении не превышала 20–22 °С, оптимального комфортного диапазона по ГОСТ 30494–96 «Здания жилые и общественные. Параметры микроклимата помещений». Диапазон назван оптимальным, т. к. вызывает ощущение комфорта в холодный период года не менее чем у 80 % людей, а оставшиеся могут повысить комфорт индивидуально, например теплее одевшись.

Но прежде чем реализовать эти решения, необходимо в натурных условиях подтвердить эффективность такого индивидуального поквартирного (или приборного) учета потребления тепла на отопление.

Литература

  1. Сеппанен О. Новые требования к энергетическим характеристикам зданий в Европе / О. Сеппанен // Энергосбережение. – 2009. – № 3.
  2. Ливчак В. И. Повышать ли уровень теплозащиты зданий? Ответ: «да» / В. И. Ливчак // АВОК. – 2009. – № 7.
  3. Ливчак В. И. Фактическое теплопотребление зданий как показатель качества и надежности проектирования / В. И. Ливчак // АВОК. – 2009. – № 2.
  4. Ливчак В. И. О расчете систем отопления, энергосбережении и температуре воздуха в отапливаемых помещениях жилого дома / В. И. Ливчак // АВОК. – 2010. – № 2.
  5. Ливчак В. И. Тепловизионное обследование не может заменить тепловые испытания зданий / В. И. Ливчак // Энергосбережение. – 2006. – № 5.
  6. Ливчак В. И. Реальный путь повышения энергоэффективности за счет утепления зданий / В. И. Ливчак // АВОК. – 2010. – № 3.
  7. Проектирование тепловых пунктов: СП 41-101–95. – М: Минстрой России, 1997.
  8. Энергосбережение в зданиях. Нормативы по теплозащите и тепловодоэлектроснабжению: МГСН 2.01–99. – М.: ГУП «НИАЦ», 1999.

1 Ливчак В. И. О требованиях энергетической эффективности зданий из приказа № 262 Минрегионразвития России / В. И. Ливчак // Энергосбережение. - 2010. - № 5. - С. 10-14

Примечания:

1. Применяемые сокращения:

ИТП - индивидуальный тепловой пункт;

ГВС - горячее водоснабжение;

ХВС - холодное водоснабжение;

УО - лицо, осуществляющее управление многоквартирным домом или собственники помещений многоквартирного дома (в случае осуществления непосредственного управления многоквартирным домом);

ЭСО - энергосервисная организация или компания;

ПО - подрядная организация, имеющая специализацию в указанной области деятельности.

2. В соответствии с частью 5 статьи 12 Федерального закона от 23 ноября 2009 г. № 261-ФЗ "Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации" (Собрание законодательства Российской Федерации, 2009, № 48, ст. 5711; 2010, № 19, ст. 2291; № 31, ст. 4160, 4206; 2011, № 29, ст. 4288, 4291; № 30, ст. 4590; № 49, ст. 7061; № 50, ст. 7344, 7359; № 51, ст. 7447; 2012, № 26, ст. 3446; № 29, ст. 3989; № 53, ст. 7595; 2013, № 14, ст. 1652; № 23, ст. 2871; № 27, ст. 3477; № 52, ст. 6961, 6964, 6966; 2014, № 40, ст. 5322; № 45, ст. 6149, 6154; 2015, № 1, ст. 19; № 27, ст. 3967; № 29, ст. 4359; 2016, № 27, ст. 4202) в перечне мероприятий должно содержаться указание на:

1) необязательность таких мероприятий для проведения их лицами, которым данный перечень мероприятий адресован;

2) возможность проведения этой организацией отдельных мероприятий из числа указанных в данном перечне мероприятий за счет средств, учитываемых при установлении регулируемых цен (тарифов) на ее товары, услуги, а также за счет средств собственников помещений в многоквартирном доме, в том числе на основании энергосервисного договора (контракта), и прогнозируемую стоимость проведения таких отдельных мероприятий;

3) определяемых на основании общедоступных источников возможных исполнителей мероприятий, указанных в данном перечне мероприятий и не проводимых этой организацией.

3. Оценка затрат на реализацию мероприятия указывается в рублях, отнесенных к квадратному метру жилой площади или полезной площади нежилых помещений и экономия, полученная в результате его реализации, указывается в процентах по каждому ресурсу и рассчитывается индивидуально для каждого многоквартирного дома в зависимости от архитектурно-планировочных, конструктивных характеристик дома, уровня его инженерного обустройства, физического износа конструктивных элементов и инженерных систем, с учетом климатических условий места расположения.

4. Мероприятия, указанные в разделе "I. Перечень основных мероприятий", предлагаются собственникам в первоочередном порядке. Порядок следования мероприятий в каждом разделе отражает приоритетность их реализации.

5. С целью достижения максимального эффекта по энергосбережению и повышению эффективности использования энергетических ресурсов рекомендуется предлагать реализацию нескольких мероприятий совместно:

1) мероприятия по установке ИТП: 13, 21;

2) мероприятия по модернизации трубопроводов и арматуры инженерных систем: 14, 22, 23;

3) мероприятия по теплоизоляции трубопроводов и арматуры инженерных систем: 15 - 17;

Loading...Loading...