Загадки планеты Земля, занимательная география. Гидроэнергетический потенциал и его распределение по континентам и странам Страны с наибольшим гидроэнергетическим потенциалом

Человек еще в глубокой древности обратил внимание на реки как на доступный источник энергии. Для использования этой энергии люди научились строить водяные колеса, которые вращала вода; этими колесами приводились в движение мельничные постава и другие установки. Водяная мельница является ярким примером древнейшей гидроэнергетической установки, сохранившейся во многих странах до нашего времени почти в первозданном виде. До изобретения паровой машины водная энергия была основной двигательной силой на производстве. По мере совершенствования водяных колес увеличивалась мощность гидравлических установок, приводящих в движение станки и т.д. В 1-й половине XIX века была изобретена гидротурбина, открывшая новые возможности по использованию гидроэнергоресурсов. С изобретением электрической машины и способа передачи электроэнергии на значительные расстояния началось освоение водной энергии путем преобразования ее в электрическую энергию на гидроэлектростанциях (ГЭС).

Общие сведения

Гидроэнергоресурсы - это запасы энергии текущей воды речных потоков и водоемов, расположенных выше уровня моря (а также энергии морских приливов).

Существенную особенность в оценку гидроэнергоресурсов вносит то обстоятельство, что поверхностные воды - важнейшая составляющая часть экологического баланса планеты. Если все остальные виды первичных энергоресурсов используются преимущественно для выработки энергии, то гидравлические ресурсы должны оцениваться и с точки зрения возможностей осуществления промышленного и общественного водоснабжения, развития рыбного хозяйства, ирригации, судоходства и т.д.

Характерна для гидроэнергоресурсов и та особенность, что преобразование механической энергии воды в электрическую происходит на ГЭС без промежуточного производства тепла.

Энергия рек возобновляема, причем цикличность ее воспроизводства полностью зависит от речного стока, поэтому гидроэнергоресурсы неравномерно распределяются в течение года, кроме того их величина меняется из года в год. В обобщенном виде гидроэнергоресурсы характеризуются среднемноголетней величиной (как и водные ресурсы).

В естественных условиях энергия рек тратится на размыв дна и берегов русла, перенос и переработку твердого материала, выщелачивание и перенос солей. Эта эрозионная деятельность может приводить и к вредным последствиям (нарушение устойчивости берегов, наводнения и др.), и иметь полезный эффект как, например, при выносе из горной породы руды и минеральных веществ, формирование, вынос и накопление различных стройматериалов (галечник, песок). Поэтому использование гидроресурсов для выработки электроэнергии наносит ущерб формированию других важных ресурсов.

Использование гидроэнергетических ресурсов занимает значительное место в мировом балансе электроэнергии. В 70-80-х годах вес гидроэнергии находился на уровне примерно 26 % всей выработки электроэнергии мира, достигнув значительной абсолютной величины. Выработка электроэнергии ГЭС мира после 2-й Мировой войны росла большими темпами: с 200 млрд. квт-ч в 1946 г. до 860 млрд. квт-ч в 1965 г. и 975 млрд. квт-ч в 1978 г. А сейчас в мире вырабатывается 2100 млрд. квт-ч гидроэергии в год, а к 2000 г. эта величина еще вырастет. Ускоренное развитие гидроэнергетики во многих государствах мира объясняется перспективой нарастания топливно-энергетических и экологических проблем, связанных с продолжением нарастания выработки электроэнергии на традиционных (тепловых и атомных) электростанциях при слабо разработанной технологической основе использования нетрадиционных источников энергии. Основная часть мировой выработки ГЭС падает на Северную Америку, Европу, Россию и Японию, в которых производится до 80 % электроэнергии ГЭС мира.

В ряде стран с высокой степенью использования гидроэнергоресурсов наблюдается снижение удельного веса гидроэнергии в электробалансе. Так, за последние 40 лет удельный вес гидроэнергии снизился в Австрии с 80 до 70 %, во Франции с 53 до очень малой величины (за счет увеличения производства электроэнергии на АЭС), в Италии с 94 до 50 % (это объясняется тем, что наиболее пригодные к эксплуатации гидроэнергоресурсы в этих странах уже почти исчерпаны). Одно из самых больших снижений произошло в США, где выработка электроэнергии на ГЭС в 1938 г. составляла 34 %, а уже в 1965 г. - только 17 %. В то же время в энергетике Норвегии эта доля составляет 99,6 %, Швейцарии и Бразилии - 90 %, Канады - 66 %.

Гидроэнергетический потенциал и его распределение по континентам и странам

Несмотря на значительное развитие гидроэнергетики в мире в учете мировых гидроэнергоресурсов до сих пор нет полного единообразия и отсутствуют материалы, дающие сопоставимую оценку гидроэнергоресурсов мира. Кадастровые подсчеты запасов гидроэнергии различных стран и отдельных специалистов отличаются друг от друга рядом показателей: полнотой охвата речной системы отдельной страны и отдельных водотоков, методологией определения мощности; в одних странах учитываются потенциальные гидроэнергоресурсы, в других вводятся различные поправочные коэффициенты и т.д.

Попытка упорядочить учет и оценку мировых гидроэнергоресуров была сделана на Мировых энергетических конференциях (МИРЭК).

Было предложено следующее содержание понятия гидроэнергетического потенциала - совокупность валовой мощности всех отдельных участков водотока, которые используются в настоящее время или могут быть энергетически использованы. Валовая мощность водотока, характеризующая собой его теоретическую мощность, определяется по формуле:

N квт = 9,81 QH,

где Q - расход водотока, м3/с; H - падение, м.

Мощность определяется для трех характерных расходов: Q = 95 % - расход, обеспеченностью 95 % времени; Q = 50 % - обеспеченностью 50 % времени; Qср - среднеарифметический.

Существенным недостатком этих предложений было то, что они предусматривали учет гидроэнергоресурсов не по всему водотоку, а только по тем его участкам, которые представляют энергетический интерес. Отбор же этих участков не мог быть твердо регламентирован, что на практике приводило к внесению в подсчеты элементы субъективизма. В табл. 1 приводятся подсчитанные для шестой сессии МИРЭК данные по гидроэнергоресурсам отдельных стран.

Вопросу упорядочения учета гидроэнергоресурсов было уделено большое внимание в работе Комитета по электроэнергии Европейской экономической комиссии ООН, которая установила определенные рекомендации по данному вопросу. Этими рекомендациями устанавливалась следующая классификация в определении потенциала:

Теоретический валовой (брутто) потенциал гидроэнергетический потенциал (или общие гидроэнергетические ресурсы):

1. поверхностный, учитывающий энергию стекающих вод на территории целого района или отдельно взятого речного бассейна;

2. речной, учитывающий энергию водотока.

страна страна мощность брутто, млн квт при расходах
95% обесп. 50% обесп. средн. 95% обесп. 50% обесп. средн
Америка Азия
Бразилия 16,5 Индия 31,4
Венесуэла 4,4 26,8 26,5 Пакистан 6,6 13,1 9,8
Канада 44,8 75,9 Япония 9,4 17,5
США 29 63,5 98,2 Турция 10,5
Чили 9,5 22,6 26,6 Океания
Европа Австралия 1,2 2,9 3,9
Австрия 3,2 7 Африка
Греция 9,6 Кот-д"Ивуар 0,5 3,5 7,5
Испания 14,9 Габон 6 18 21,9
Италия 9,2 13,3 17,4 Гвинея 0,5 3,5 8
Норвегия 18,4 20,3 21,4 Камерун 4,8 18,3 28,7
Португалия 0,7 2,7 5,8 Конго (Браззавиль) 3 9 11,3
Финляндия 1,9 Мадагаскар 14,3 49 80
Франция 7,7 Мали 1 4,4
Германия 1,6 2,8 Сенегал 1,1 5,5
Швеция 22,5 ЦАР 3,5 10,5 13,8
Югославия 2,4 6,3 10,1 Чад 2,5 4,3

Эксплуатационный чистый (или нетто) гидроэнергетический потенциал:

1. технический (или технические гидроэнергоресурсы) - часть теоретического валового речного потенциала, которая технически может быть использована или уже используется (мировой технический потенциал оценивается приблизительно в 12300 млрд. квт-ч);

2. экономический (или экономические гидроэнергоресурсы) - часть технического потенциала, использование которой в существующих реальных условиях экономически оправдано (т.е. экономически выгодно для использования); экономические гидроэнергоресурсы в отдельных странах приведены в табл.4.

В соответствии с этим полная величина мировых потенциальных гидроэнергоресурсов речного стока приведена в табл.2.

Табл.2 Гидроэнергетические ресурсы (полный гидроэнергетический речной потенциал) отдельных континентов

континент гидроэнергоресурсы % от итога по земному шару удельная величина гидроэнергоресурсов, квт/кв.км
млн. Квт млрд. Квт-ч
Европа 240 2100 6,4 25
Азия 1340 11750 35,7 30
Африка 700 6150 18,7 23
Северная Америка 700 6150 18,7 34
Южная Америка 600 5250 16 33
Австралия 170 1500 4,5 19
Итого по земному шару 3750 32900 100 28
бывший СССР 450 3950 12 20

Приведенные расчеты в свое время внесли существенные изменения в прежние представления о распределении гидроэнергоресурсов по континентам. Особенно большие изменения были получены по Африке и Азии. Эти данные показывают, что на Азиатском континенте сосредоточено почти 36 % мировых запасов гидроэнергии, в то время как в Африке, которая считалась наиболее богатой гидроэнергоресурсами, сосредоточено около 19 %. В табл. 3 приводится сопоставление данных, характеризующих распределение гидроэнергоресурсов по континентам, полученных по разным подсчетам. Табл.3 Насыщенность гидроэнергоресурсами территории континентов, тыс. квт-ч на 1 кв. км

Табл.4 Сопоставление данных о распределении потенциальных гидроэнергетических ресурсов по континентам (% от итога по земному шару)

континент по данным Геологической службы США по данным Оксфордского атласа по данным югославского делегата на IV МИРЭК по данным ООН по подсчету, произведенному в СССР
Европа 10 10,3 3,6 13,8 6,4
Азия 24,2 22,8 41,2 34 35,7
Африка 38,7 41,1 20,5 32,2 18,7
Северная Америка 14 12,7 12,6 11,4 18,7
Южная Америка 9,6 10,1 19,8 7,6 16
Австралия 3,5 3 2,1 1 4,5
Земля в целом 100 100 100 100 100

Если даже учесть то, что прежние представления о распределении гидроэнергоресурсов основывались на данных, подсчитанных по стоку 95%-й обеспеченности, то все же нельзя не обратить внимание на исключительную завышенность в прежних представлениях потенциальных ресурсов Африки, исходивших из преувеличенных представлений о стоке рек этого континента. Если годовой сток бассейна реки Конго прежде оценивался в 500-570 мм слоя, то в настоящее время он оценивается всего в 370 мм. Для реки Нигер принимался слой стока 567 мм, а фактически он составляет около 300 мм. То же получается с данными о средней величине слоя стока, являющимися хорошими показателями гидроэнергетического потенциала отдельных континентов (см. табл. 7). Из этой таблицы видно, что по высоте континента и величине стока, т.е. по основным энергетическим показателям, Африка стоит далеко позади Азии и почти на одном уровне с Северной Америкой.

Т.о., распределение гидроресурсов связано в большей мере с географическими особенностями крупнейших рек и их бассейнов. Примерно 50 % мирового водостока приходится на 50 крупнейших рек, бассейны которых охватывают около 40 % суши. Пятнадцать рек из этого числа имеют сток в объеме 10 тыс. км3/с или больше. Девять из них находятся в Азии, три - в Южной и две - в Северной Америке, одна - в Африке.

В гидроэнергоресурсах мира большая часть (около 60 %) приходится на восточное полушарие, которое превосходит западное и по удельному (на единицу площади) показателю гидроресурсной обеспеченности (соответственно 17 и 15 кВт/км2.

Благодаря высокому уровню промышленного развития, страны Западной Европы и Северной Америки в течение длительного времени опережали все другие страны по степени освоения гидроэнергоресурсов. Уже в середине 20-х годов гидропотенциал был освоен в Западной Европе примерно на 6 %, а в Северной Америке, располагавшей в этот период наибольшими гидроэнергетическими мощностями, - на 4 %. Через полвека соответствующие показатели составляли для Западной Европы около 60 %, а для Северной Америки - примерно 35 %. Уже в середине 70-х годов абсолютные мощности ГЭС Западной Европы превосходили таковые в любом другом регионе мира.

В развивающихся странах относительно высокие темпы использования гидроэнергии в значительной мере обусловлены крайне низким исходным уровнем. При более чем 50-кратном увеличение за полвека установленных гидроэнергетических можностей развивающиеся страны в середине 70-х годов более чем в 4,5 раза отставали от развитых стран и по мощности электростанций, и по выработке на них электроэнергии. И если в развитых странах гидропотенциал в середине 70-х использовался примерно на 45 %, то в развивающихся странах - только на 5 %. Для всего мира этот показатель в целом составляет 18 %. Таким образом пока еще для мира характерно использование лишь небольшой части гидроэнергетического потенциала.

В связи с исчерпанием в ряде стран экономических гидроэнергоресурсов в этих странах значительно повысился интерес к сооружению гидроаккумулирующих электростанций (ГАЭС). В Европе стали сооружать специальные ГАЭС еще в 20-30-х годах, но большое развитие они получили начиная с середины 50-х годов. В настоящее время более половины ГАЭС мира находятся в странах ЕС. В США и Канаде гидроаккумулирующие установки в прошлом получили меньшее распространение, чем в Европе, т.к. эти страны располагали большими запасами экономических гидроэнергоресурсов. Однако за последние годы в США и Канаде также повысился интерес к ГАЭС. Также большой интерес в мире в последнее время представляет использование энергии морских приливов для получения электроэнергии, это перспективное направление в гидроэнергетике, т.к. энергия морских приливов возобновляема и практически неисчерпаема - это огромный источник энергии. Во многих странах уже действуют приливные электростанции (ПЭС). Дальше всех в этом направлении пока продвинулась Франция.

Экологический аспект в использовании гидроэнергоресурсов

При использовании гидроэнергоресурсов очень важен экологический аспект. Строительство ГЭС во многих случаях сопровождается сооружением водохранилищ, которые подчас оказывают негативное влияние на экологическую обстановку, вносят ряд изменений в природу. Гидроэнергетика будущего должна при минимальном негативном воздействии на природную среду максимально удовлетворять потребности людей в электроэнергии. Поэтому проблемами сохранения природной и социальной среды при гидротехническом строительстве уделяется сегодня все большее внимание. В современных условиях особенно важен верный прогноз последствий подобного строительства. Результатом прогноза должны стать рекомендации по смягчению и преодолению неблагоприятных экологических ситуаций при строительстве ГЭС, сравнительная оценка экологической эффективности созданных или проектируемых гидроузлов. Таким образом, можно говорить о целесообразности образования новой, более узкой и сложной категории гидроэнергетических ресурсов - экологически эффективной части, дифференцированной по степени экологической нагрузки, вызванной использованием определенной доли гидроэнергопотенциала. К сожалению, на настоящий момент разработка методов определения экологического энергопотенциала практически не ведется, но очевидно, что развитие гидроэнергетики без детальных экологических экспертиз гидроэнергетических проектов способно подорвать и без того хрупкое экологическое равновесие в мире.

Список литературы

Авакян А.Б. "Комплексное использование и охрана водных ресурсов", М: 1990.

Бабурин В.Н. "Гидроэнергетика и комплексное использование водных ресурсов", М: Наука, 1986.

Большая Советская Энциклопедия, М: Сов. Энциклопедия, 1971. - том 6.

Гидроэнергетические ресурсы СССР, М: Наука, 1967.Краткая географическая энциклопедия, М: Сов. Энциклопедия, 1959. - том 2.

Обрезков В.И. "Гидроэнергетика", учебник для ВУЗов, М: 1989.

Топливно-энергетические ресурсы капиталистических и развивающихся стран, М: Наука, 1978.

Энергетик, М: 1993, ј5.

Энергия, М: 1994, ј4.

Гидроэнергетические ресурсы имеют конечную величину, хоть и считаются возобновляемыми. Они национальное богатство, как нефть, газ или же другие полезные ископаемые, и нуждаются в бережном и обдуманном обращении.

Энергия воды

Еще в древности люди заметили, что вода, падающая сверху вниз, может совершать определенную работу, например крутить колесо. Это свойство падающей воды стало использоваться для приведения в движение колес мельницы. Так появились первые водяные мельницы, сохранившиеся до наших дней почти в своем первозданном виде. Водяная мельница - это и есть первая гидроэнергетическая установка.

Зародившееся в 17-м веке мануфактурное производство также использовало водяные колеса, а в 18-м веке, например, в России таких мануфактур было уже около трех тысяч. Известно, что самые мощные установки из таких колес были применены на Кренгольмской мануфактуре (река Нарова). Водяные колеса имели диаметр 9,5 метра и развивали мощность до 500 лошадиных сил.

Гидроэнергетические ресурсы: определение, преимущества и недостатки

В 19-м веке после водяных колес появились гидротурбины, а вслед за ними - электрические машины. Это позволило преобразовывать энергию падающей воды в электрическую энергию, а затем передавать ее на некоторое расстояние. В царской России к 1913 году было около 50 тысяч установок, оборудованных гидротурбинами, на которых вырабатывалась электроэнергия.

Та часть энергии рек, которая может быть превращена в электрическую энергию, называется гидроэнергетическими ресурсами, а устройство, преобразующее энергию падающей воды в электрическую энергию, - гидроэлектростанцией (ГЭС). Устройство электростанции обязательно включает гидравлическую турбину, которая приводит во вращательное движение электрический генератор. Для получения потока падающей воды строительство электростанции предусматривает сооружение плотин и водохранилищ.

Преимущества использования гидроэлектростанций:

  • Энергия реки является возобновляемой.
  • Отсутствует засорение окружающей среды.
  • Получается дешевая электроэнергия.
  • Улучшаются климатические условия вблизи водохранилища.

Недостатки использования гидроэлектростанций:

  • Затопление некоторой площади земли для сооружения водохранилища.
  • Изменение многих экосистем по всему руслу реки, уменьшение численности рыб, нарушение мест гнездования птиц, загрязнение рек.
  • Опасность строительства в горной местности.

Понятие гидроэнергетического потенциала

Для оценки гидроэнергетических ресурсов реки, страны или же всей планеты на Мировой энергетической конференции (МИРЭК) было дано определение гидроэнергетического потенциала как суммы мощностей всех участков рассматриваемой территории, которые можно использовать для получения электроэнергии. Существует несколько разновидностей гидроэнергетического потенциала:

  • Валовой потенциал, который представляет потенциальные гидроэнергетические ресурсы.
  • Технический потенциал - та часть валового потенциала, которая может технически использоваться.
  • Экономический потенциал - та часть технического потенциала, использование которого экономически целесообразно.

Теоретическая мощность некоторого тока воды определяется по формуле

N (кВт) = 9,81QH,

где Q - расход водотока (м 3 /сек); H - высота падения воды (м).

Самая мощная гидроэлектростанция в мире

14 декабря 1994 года в Китае, на реке Янцзы, было начато строительство самой крупной гидроэлектростанции, получившей название «Три ущелья». В 2006 году было закончено строительство плотины, а также осуществлен запуск первого гидроагрегата. Эта ГЭС должна была стать центральной ГЭС энергосистемы Китая.

Вид плотины этой станции напоминает конструкцию Высота плотины равна 185 метрам, а длина - 2,3 км. В центре плотины находится водосброс, рассчитанный на спуск 116 000 м 3 воды в секунду, то есть с высоты около 200 м за одну секунду падает более 100 тонн воды.

На которой построена гидроэлектростанция «Три ущелья», - одна из самых мощных рек мира. Строительство ГЭС на этой реке позволяет использовать природные гидроэнергетические ресурсы этого района. Начинаясь в Тибете, на высоте 5600 м, река приобретает значительный гидроэнергетический потенциал. Самым привлекательным местом для строительства плотины оказался район «Трех ущелий», где река вырывается из гор на равнину.

Конструкция ГЭС

Гидроэлектростанция «Три ущелья» имеет три здания ГЭС, в которых расположены 32 гидроагрегата, каждый из которых имеет мощность 700 МВт, и два гидроагрегата мощностью по 50 МВт. Общая равна 22,5 ГВт.

В результате строительства плотины образовалось водохранилище объемом 39 км 3 . Строительство плотины повлекло переселение на новое место жителей двух городов с общей численностью населения 1,24 миллиона человек. Кроме того, из затопляемой зоны были вывезены 1300 объектов археологии. На все работы по подготовке строительства плотины было потрачено 11,25 млрд долларов. Общие затраты на строительство гидроэлектростанции «Три ущелья» составляют 22,5 млрд долларов.

В строительстве данной ГЭС грамотно предусмотрено обеспечение судоходства, более того, после сооружения водохранилища поток грузовых судов возрос в 5 раз.

Пассажирские суда проходят судоподъемник, который пропускает суда весом, не превышающим 3000 тонн. Для пропуска грузовых судов построены две нитки пятиступенчатых шлюзов. В этом случае вес судов должен быть менее 10 000 тонн.

Каскад ГЭС на Янцзы

Водные и гидроэнергетические ресурсы реки Янцзы позволяют построить на этой реке не одну ГЭС, что и было предпринято в Китае. Выше ГЭС «Три ущелья» сооружен целый каскад ГЭС. Это самый мощный каскад более 80 ГВт.

Строительство каскада позволяет избежать засорения водохранилища «Три ущелья», так как уменьшает эрозию в русле реки выше ГЭС. После этого переносимого ила в воде становится меньше.

Кроме того, каскад ГЭС позволяет регулировать поступление воды к ГЭС «Три ущелья» и получать равномерную выработку электроэнергии на ней.

«Итайпу» на реке Парана

Парана в переводе означает «серебряная река», она является второй по величине рекой Южной Америки и имеет длину 4380 км. Эта река протекает сквозь очень твердый грунт, поэтому, преодолевая его, она создает на своем пути пороги и водопады. Это обстоятельство указывает на благоприятные условия для строительства здесь гидроэлектростанций.

ГЭС «Итайпу» была построена на реке Парана, в 20 км от города Фос-ду-Игуасу в Южной Америке. По мощности эта гидроэлектростанция уступает только ГЭС «Три ущелья». Находясь на границе Бразилии и Парагвая, ГЭС «Итайпу» полностью обеспечивает электроэнергией Парагвай и на 20 % Бразилию.

Строительство гидроэлектростанции началось в 1970 году и закончилось в 2007-м. 10 генераторов мощностью 700 МВт установлены на стороне Парагвая и столько же - на стороне Бразилии. Так как вокруг гидроэлектростанции находился тропический лес, который подлежал затоплению, то животные из этих мест были переселены на другие территории. Длина плотины равна 7240 метрам, а высота - 196 м, стоимость строительства оценивается в 15,3 млрд долларов. Мощность ГЭС равна 14 000 ГВт.

Гидроэнергетические ресурсы России

Российская Федерация обладает большим водным и энергетическим потенциалом, но гидроэнергетические ресурсы страны распределены по ее территории крайне неравномерно. 25 % этих ресурсов расположены в Европейской части, 40 % - в Сибири и 35 % - на Дальнем Востоке. В европейской части государства, по оценкам специалистов, гидроэнергопотенциал используется на 46 %, а весь гидропотенциал государства оценивается в 2500 млрд КВт-часов. Это является вторым результатом в мире после Китая.

Источники гидроэнергии Сибири

Сибирь обладает огромными запасами гидроресурсов, особенно богата гидроэнергетическими ресурсами Восточная Сибирь. Там протекают реки Лена, Ангара, Енисей, Обь и Иртыш. Гидропотенциал этого региона оценивается в 1000 млрд кВт-часов.

Саяно-Шушенская ГЭС имени П. С. Непорожнего

Мощность равна 6400 МВт. Это самая мощная ГЭС в Российской Федерации, а в мировом рейтинге она занимает 14-е место.

Участок Енисея, который называется Саянским коридором, благоприятен для построения гидроэлектростанций. Здесь река проходит сквозь горы Саяны, образуя множество порогов. Именно в этом месте построена Саяно-Шушенская ГЭС, а также и другие ГЭС, образующие каскад. Саяно-Шушенская ГЭС является самой верхней ступенью в этом каскаде.

Строительство велось с 1963-го по 2000 год. Конструкция станции состоит из плотины высотой 245 метров и длиной 1075 метров, здания ГЭС, распределительного устройства и конструкции водосброса. В здании ГЭС находятся 10 гидроагрегатов мощностью по 640 МВт.

Образовавшееся после строительства плотины водохранилище имеет объем более 30 км 3 , а его общая площадь составляет 621 км 2 .

Крупные ГЭС Российской Федерации

Гидроэнергетические ресурсы Сибири в настоящее время используются на 20 %, хотя здесь построено много достаточно крупных ГЭС. Самая крупная среди них - это Саяно-Шушенская ГЭС, за которой идут следующие гидроэлектростанции:

  • Красноярская ГЭС мощностью 6000 МВт (на Енисее). На ней установлен судоподъемник, пока единственный в Российской Федерации.
  • Братская ГЭС мощностью 4500 МВт (на Ангаре).
  • 3840 МВт (на Ангаре).

Менее всего освоен потенциал Дальнего Востока. По оценкам специалистов, гидропотенциал этого региона используется на 4 %.

Источники гидроэнергии в Западной Европе

В странах Западной Европы гидроэнергетический потенциал используется почти полностью. Если он еще и достаточно высок, то такие страны полностью обеспечивают себя электрической энергией за счет ГЭС. Это такие страны, как Норвегия, Австрия и Швейцария. Норвегия занимает первое место в мире по производству электрической энергии на одного жителя страны. В Норвегии эта цифра составляет 24 000 кВт-часов в год, а 99,6 % этой энергии производится именно на гидроэлектростанциях.

Гидроэнергетические потенциалы различных стран Западной Европы заметно отличаются друг от друга. Это связано с различными условиями местности и различным стокообразованием. 80 % общего гидроэнергопотенциала Европы сосредоточено в горах с высокими показателями стока: западная часть Скандинавии, Альпы, Балканский полуостров и Пиренеи. Общий гидроэнергетический потенциал Европы равен 460 млрд кВт-час в год.

Запасы топлива в Европе очень малы, поэтому энергетические ресурсы рек освоены весьма значительно. Например, в Швейцарии эти ресурсы освоены на 91 %, во Франции - на 92 %, в Италии - на 86 %, а в Германии - на 76 %.

Каскад ГЭС на реке Рейн

На этой реке построен каскад гидроэлектростанций, состоящий из 27 ГЭС общей мощностью около 3000 МВт.

Одна из станций построена еще в 1914 году. Это ГЭС Laufenburg. Она дважды подвергалась реконструкции, после чего ее мощность составляет 106 МВт. Кроме того, станция относится к памятникам архитектуры и является национальным достоянием Швейцарии.

ГЭС Rheinfelden относится к современным ГЭС. Ее запуск был осуществлен в 2010 году, а мощность составляет 100 МВт. В конструкцию входят 4 гидроагрегата по 25 МВт. Эта ГЭС сооружена взамен старой станции, построенной еще в 1898 году. Старая станция сейчас находится на реконструкции.

Источники гидроэнергии в Африке

Гидроэнергетические ресурсы Африки обусловлены протекающими по ее территории реками: Конго, Нилом, Лимпопо, Нигер и Замбези.

Река Конго обладает значительным гидроэнергопотенциалом. Часть русла этой реки имеет каскад водопадов, известных как пороги Инга. Здесь водный поток спускается с высоты 100 метров со скоростью 26 000 м 3 в секунду. В этой местности и были построены 2 ГЭС: "Инга-1" и "Инга-2".

Правительство Демократической Республики Конго в 2002 году утвердило проект построения комплекса «Большая Инга», который предусматривал реконструкцию существующих ГЭС "Инга-1" и "Инга-2" и строительство третьей - "Инга-3". После осуществления этих планов решено построить самый крупный в мире комплекс «Большая Инга».

Этот проект был темой обсуждения на Международной конференции по энергетике. Приняв во внимание состояние водных и гидроэнергетических ресурсов Африки, представители бизнеса и правительств стран Центральной и Южной Африки, присутствовавшие на конференции, одобрили данный проект и установили его параметры: мощность «Большой Инги» установлена в размере 40 000 МВт, что больше самой мощной ГЭС «Три ущелья» почти в 2 раза. Сдача в эксплуатацию ГЭС намечена на 2020 год, а затраты на строительство предполагаются в размере 80 млрд долларов.

После того как проект будет реализован, ДРК станет самым крупным поставщиком электроэнергии в мире.

Энергосистема стран Северной Африки

Северная Африка расположена вдоль побережья Средиземного моря и Атлантического океана. Этот район Африки называется Магриб, или Арабский Запад.

Гидроэнергетические ресурсы в Африке распределены неравномерно. На севере континента находится самая жаркая пустыня мира - Сахара. Эта территория испытывает дефицит воды, поэтому обеспечение водой этих регионов - важнейшая задача. Ее решением является строительство водохранилищ.

Первые водохранилища появились в Магрибе еще в 30-е годы прошлого века, затем много их строилось в 60-е годы, но особенно интенсивное строительство началось в 21-м веке.

Гидроэнергетические ресурсы Северной Африки определяются в основном протекающей здесь рекой Нил. Это самая длинная река мира. В 60-е годы прошлого столетия на этой реке была построена Асуанская плотина, после строительства которой образовалось огромное водохранилище длиной около 500 км, а шириной около 9 км. Заполнение водохранилища водой происходило в течение 5 лет с 1970-го по 1975 год.

Асуанская плотина была построена Египтом при сотрудничестве с Советским Союзом. Это был интернациональный проект, в результате осуществления которого удается вырабатывать до 10 млрд кВт-часов электроэнергии в год, контролировать уровень воды в реке Нил во время паводков, накапливать воду в водохранилище в течение длительного времени. От водохранилища расходится сеть каналов, орошающих поля, а на месте пустыни появились оазисы, все больше площадей используется для земледелия. Водные и гидроэнергетические ресурсы Северной Африки использованы с максимальной результативностью.

Распределение мирового гидроэнергетического потенциала

  • Азия - 42 %.
  • Африка - 21 %.
  • Северная Америка - 12 %.
  • Южная Америка - 13 %.
  • Европа - 9 %.
  • Австралия и Океания - 3 %

Мировой гидроэнергетический потенциал оценен в 10 трлн кВт-часов электрической энергии.

20-й век можно назвать веком гидроэнергетики. 21-й век вносит в историю этой отрасли свои дополнения. В мире повысилось внимание к гидроаккумулирующим станциям (ГАЭС) и приливным электростанциям (ПЭС), использующим для получения электрической энергии силу морских приливов. Развитие гидроэнергетики продолжается.

23. Мировой гидроэнергетический потенциал речного стока

Гидроэнергией (водной энергией) называют энергию, которой обладает вода, движущаяся в потоках по земной поверхности. Существуют три категории гидроэнергетического потенциала (гидроэнергетических ресурсов): теоретический, технический и экономический.

При определении теоретического гидро-энергопотенциала (его называют также потенциальным и валовым) учитывается полный поверхностный сток рек, который, как уже отмечено, составляет 48 тыс. км 3 /год. Если принять среднюю высоту суши равной 800 м, то теоретический потенциал будет исчисляться в 1000 млн кВт возможной мощности, что соответствует выработке около 35 трлн кВт» ч в год. Впрочем, есть и другие оценки этого потенциала, которые колеблются в пределах от 35 трлн до 40 трлн кВт-ч.

Технический гидроэнергопотенциал – это та часть теоретического потенциала, которая технически может быть использована с учетом годовых и сезонных колебаний стока в реках, наличия подходящих створов для сооружения ГЭС, а также потерь воды вследствие испарения, фильтрации и т. д. Коэффициент пересчета теоретического потенциала в технический для разных регионов Земли и стран не одинаков, но в среднем его обычно принимают равным 0,5. Чаще всего мировой технический гидроэнергопотенциал оценивается в 15 трлн кВт-ч возможной выработки.

Наконец, экономический гидроэнергопо-тенциал – это та часть технического потенциала, использование которой в данных конкретных условиях места и времени можно считать экономически оправданным. Он меньше технического потенциала и, по оценкам, составляет 8-10 трлн кВт-ч в год, что соответствует мощности в 2340 млн кВт. Можно добавить, что эту цифру нельзя рассматривать как абсолютно стабильную. Например, после мирового энергетического кризиса середины 1970-х гг. и роста цен на топливо коэффициент пересчета технического потенциала в экономический возрос до 70–80 %, и его стали оценивать уже в 15 трлн кВт-ч в год. Но затем этот коэффициент снова снизился.

Априори можно предположить, что распределение гидроэнергетического потенциала по территории земной суши неравномерно. И действительно, согласно имеющимся данным, по размерам теоретического потенциала впереди стоит Азия (42 % мирового), за которой следуют Африка (21), Северная и Южная Америка (по 12–13 %), Европа (9) и Австралия и Океания (3 %). За этими общими цифрами географ конечно же видит размещение крупнейших речных систем мира.

Установлено, что примерно половина мирового речного стока приходится на 50 крупнейших рек, бассейны которых покрывают 40 % земной суши. В том числе 15 из них (9 в Азии, 3 в Южной, 2 в Северной Америке и 1 в Африке) имеют средний расход воды в размере 10 тыс. м 3 /с или более. Но этот показатель сам по себе еще не определяет роль той или иной реки в гидропотенциале. Например, Амазонка выносит в океан в пять раз больше воды, чем вторая по водоносности река мира – Конго. Однако Конго благодаря топографическим и геологическим особенностям территории, по которой она протекает, имеет значительно больший гидроэнергетический потенциал, чем Амазонка.

Распределение экономического гидроэнер-гопотенциала по регионам мира показано в таблице 27.

Приведенные в таблице 27 данные позволяют сделать несколько выводов. О том, что крупные регионы Земли по масштабам экономического гидропотенциала «выстраиваются» следующим образом: Зарубежная Азия, Латинская Америка, Африка и Северная Америка, СНГ, зарубежная Европа, Австралия и Океания. О том, что пока еще экономический гидропотенциал Земли используется лишь на 21 % (это означает, что в принципе годовое производство электроэнергии на ГЭС можно увеличить примерно в пять раз). Наконец, о том, что степень освоенности гидроэнергетического потенциала особенно велика в зарубежной Европе, где для сооружения ГЭС использовано уже большинство выгодных речных створов, и в Северной Америке. Наиболее благоприятные ресурсные предпосылки для развития гидроэнергетики имеют Азия, Африка и Латинская Америка. Можно добавить, что на развивающиеся страны в целом приходится еще примерно 2/3 всего неосвоенного мирового гидроэнергопотенциала.

Таблица 27

МИРОВОЙ ЭКОНОМИЧЕСКИЙ ГИДРОЭНЕРГОПОТЕНЦИАЛ И ЕГО ИСПОЛЬЗОВАНИЕ

* Без стран СНГ.

Среди стран по размерам экономического гидроэнергетического потенциала особо выделяется первая пятерка в составе Китая (1260 млрд кВт-ч), России (850 млрд), Бразилии (765 млрд), Канады (540 млрд) и Индии (500 млрд кВт ч), на долю которой приходится почти 1/2 всего этого потенциала. Затем следуют ДР Конго (420 кВт-ч), США (375), Таджикистан (265), Перу (260), Эфиопия (260), Норвегия (180), Турция (125), Япония (115 кВт – ч). Степень использования этого потенциала в странах очень различна. Во Франции, в Швейцарии, Италии, Японии он использован уже почти полностью, в США и Канаде на 38–40 %, тогда как в Китае – на 16, в Индии – на 15, в Перу – на 5, а в ДР Конго – на 1,5 %.

Россия обладает очень большими гидроэнергетическими ресурсами. Ее теоретический потенциал оценивается в 2900 млрд кВт-ч, технический – в 1670 млрд, а экономический, как уже отмечено, – в 850 млрд кВт ч в год. Но распределяется он по стране крайне неравномерно: на европейскую ее часть приходится 15 %, а на азиатскую – 85 %. Освоено из него пока лишь 18 % (в том числе в европейской части – 50 %, в Сибири – 19 и на Дальнем Востоке – 4 %).

Гидромашины.

Литература:

1. Смирнов И.Н. Гидравлические турбины и насосы. – М.: Высшая школа, 1969.

2. Ковалев Н.Н. Гидротурбины. Конструкции и вопросы проектирования. – Л.: Машиностроение, 1971.

3. Справочник по гидротурбинам. Под ред. Ковалева Н.Н. – Л.: Машиностроение, 1984.

4. Орго В.М. Гидротурбины. – Л.: изд. Ленинградского университета, 1975.

5. Кривченко Г.И. Гидравлические машины. Турбины и насосы. – М.: Энергоатомиздат, 1983.

6. Щапов Н.М. Турбинное оборудование гидростанций. – М.-Л., Госэнергоиздат, 1955.

7. Байбаков О.В. и Зеегофер О.И. Гидравлика и насосы. – М.: Госэнергоиздат, 1957.

8. Брызгалов В.И., Гордон Л.А. Гидроэлектростанции. – Красноярск. ИПЦ КГТУ, 2002.

9. СТО 17330282.27.140.005-2008 Гидротурбинные установки. Организация эксплуатации и обслуживания. Нормы и требования. ОРГРЭС.

10. СТО 17330282.27.140.006-2008 Гидрогенераторы. Организация эксплуатации и технического обслуживания. Нормы и требования. Ленгидропроект.

11. СТО 17330282.27.140.007-2008 Технические системы гидроэлектростанций. Организация эксплуатации и технического обслуживания. Нормы и требования. ОРГРЭС.

Лекция 1.

Использование водной энергии. Гидроэнергетический потенциал. Технические схемы использования гидроэнергии.

1.1 Задачи использования водной энергии.

Использование гидроэнергетических ресурсов имеет ряд технических и экономических преимуществ перед использованием других энергоресурсов. Преимущества сводятся к следующему:

    Гидроэнергия – возобновляемый источник, так называемый «белый уголь». Использование гидроэнергии позволяет сократить потребление углеводородного топлива для нужд электроэнергетики.

    Себестоимость 1 кВтч электроэнергии вырабатываемой на ГЭС намного меньше, чем на тепловой станции, отсюда быстрая окупаемость капитальных вложений затраченных на строительство ГЭС. (Себестоимость э/э СШ ГЭС ≈ 10 коп.,).

    На выработку электроэнергии на ГЭС требуется значительно меньше рабочей силы, из-за простоты технологического процесса.*

    ГЭС обладает высокой маневренностью и гибкостью в работе. ГА может быть запущен на ХХ и включен в работу в течении от1,5 до 2 минут. (Временно неработающий, исправный ГА постоянно находится в «горячем резерве» не расходуя при этом никакой энергии.)

    Расход электроэнергии на собственные нужды на ГЭС составляет (0,3 – 0,5) %, а на ГРЭС до (8 – 10) % от производимой электроэнергии, что приводит к заметной экономии.

    По сравнению с турбоагрегатами, гидроагрегаты имеют более высокий КПД. (КПД турбины до 95%, КПД гидроагрегата до 90%).

    На ГЭС значительно меньше аварийность и износ оборудования, следовательно они более надежны в эксплуатации.

    Возможность получения электроэнергии в больших количествах и низкой стоимости, стимулирует развитие электроемких производств (например: Аl).

    Одновременно со строительством ГЭС разрешаются вопросы комплексного использования рек для судоходства, оршения, водоснабжения.

Однако, в деле использования водной энергии для нужд общества имеется и ряд существенных недостатков, а именно:

    Неравномерность стока рек в зависимости от времени года.

    Удаленность створов пригодных для строительства ГЭС от промышленных центров.

    Большая трудоемкость и стоимость строительных работ, что приводит к длительным срокам строительства и большим начальным капитальным вложениям.

Указанные недостатки в значительной мере устраняются тем, что:

    При строительстве ГЭС создаются емкие водохранилища для регулирования стока рек. (Например: водохранилище Братской ГЭС – многолетнего регулирования, СШГЭС – годичного (сезонного) регулирования, Майнской ГЭС – недельно-суточного регулирования).

    Обеспечивается возможность передавать электроэнергию на значительные расстояния посредством ЛЭП высокого напряжения (Максимально достигнутые значения напряжения ЛЭП ~ 1150 кВ, = 1400 кв).

    При сооружениях ГЭС используются мощные строительные механизмы и применяются современные технологии строительства гидроузлов (бетоноукладочный кран КБГС-1000 г/п – 25 тонн, быстроходный, переподъем)

Таким образом, необходимость и преимущество использования водной энергии бесспорны и очевидны.

1.2 Гидроэнергетический потенциал.

При оценке энергетического потенциала рек следует различать:

    Теоретический потенциал – суммарный (валовой) потенциал речного стока по отношению к уровню морей.

    Технический потенциал – определяется существующим уровнем развития техники и составляет на сегодня 64% от валового.

    Экономический потенциал – часть технического потенциала, которую экономически выгодно использовать (при сравнении с другими видами электростанций).

По степени освоения экономически эффективных гидроэнергетических ресурсов Россия значительно уступает таким экономически развитым странам, как США и Канада.

В таблице 1.1 приведены данные об экономическом потенциале гидроэнергетических ресурсов рек некоторых стран и степени его использования.

Табл. 1.1 Данные об экономическом потенциале гидроэнергоресурсов рек некоторых стран и степени его использования.

Экономический потенциал

Выработка электроэнергии на ГЭС, 10 9 кВтч

Степень использования

экономического потенциала, %.

Бразилия

Норвегия

Водные ресурсы России составляют около 11% мировых ресурсов. Согласно исследованиям проведенным около 30 лет назад, экономический потенциал водных ресурсов нашей страны оценен в 852 млрд. кВтч. В России наибольший экономический потенциал сосредоточен в Восточно-Сибирском регионе – 350 млрд. кВтч, Дальневосточном – 294 млрд. кВтч и Западно-Сибирском – 77 млрд. кВтч. На начало 2000 г. этот потенциал использован на 23,4 %, в том числе в Европейской части на 46,6%, в Сибири на 19,7%, на Дальнем Востоке всего лишь на 3,3%.

Табл. 1.2 Региональное распределение гидроэнергетического потенциала России.

Экономические районы

Экономический гидропотенциал 10 9 кВтч

Освоенный гидропотенциал 10 9 кВтч

Степень освоения гидропотенциала %

Всего по России, в т.ч.

Северный

Северо-Западный

Центральный

Волго-Вятский

Поволжский

Северо-Кавказский

Уральский

Западно-Сибирский

Восточно-Сибирский

Дальневосточный

Гидроэнергией (водной энергией) называют энергию, которой обладает вода, движущаяся в потоках по земной поверхности. Существуют три категории гидроэнергетического потенциала (гидроэнергетических ресурсов): теоретический, технический и экономический.
При определении теоретического гидро-энергопотенциала (его называют также потенциальным и валовым) учитывается полный поверхностный сток рек, который, как уже отмечено, составляет 48 тыс. км3/год. Если принять среднюю высоту суши равной 800 м, то теоретический потенциал будет исчисляться в 1000 млн кВт возможной мощности, что соответствует выработке около 35 трлн кВт» ч в год. Впрочем, есть и другие оценки этого потенциала, которые колеблются в пределах от 35 трлн до 40 трлн кВт-ч.
Технический гидроэнергопотенциал – это та часть теоретического потенциала, которая технически может быть использована с учетом годовых и сезонных колебаний стока в реках, наличия подходящих створов для сооружения ГЭС, а также потерь воды вследствие испарения, фильтрации и т. д. Коэффициент пересчета теоретического потенциала в технический для разных регионов Земли и стран не одинаков, но в среднем его обычно принимают равным 0,5. Чаще всего мировой технический гидроэнергопотенциал оценивается в 15 трлн кВт-ч возможной выработки.
Наконец, экономический гидроэнергопо-тенциал – это та часть технического потенциала, использование которой в данных конкретных условиях места и времени можно считать экономически оправданным. Он меньше технического потенциала и, по оценкам, составляет 8-10 трлн кВт-ч в год, что соответствует мощности в 2340 млн кВт. Можно добавить, что эту цифру нельзя рассматривать как абсолютно стабильную. Например, после мирового энергетического кризиса середины 1970-х гг. и роста цен на топливо коэффициент пересчета технического потенциала в экономический возрос до 70–80 %, и его стали оценивать уже в 15 трлн кВт-ч в год. Но затем этот коэффициент снова снизился.
Априори можно предположить, что распределение гидроэнергетического потенциала по территории земной суши неравномерно. И действительно, согласно имеющимся данным, по размерам теоретического потенциала впереди стоит Азия (42 % мирового), за которой следуют Африка (21), Северная и Южная Америка (по 12–13 %), Европа (9) и Австралия и Океания (3 %). За этими общими цифрами географ конечно же видит размещение крупнейших речных систем мира.
Установлено, что примерно половина мирового речного стока приходится на 50 крупнейших рек, бассейны которых покрывают 40 % земной суши. В том числе 15 из них (9 в Азии, 3 в Южной, 2 в Северной Америке и 1 в Африке) имеют средний расход воды в размере 10 тыс. м3/с или более. Но этот показатель сам по себе еще не определяет роль той или иной реки в гидропотенциале. Например, Амазонка выносит в океан в пять раз больше воды, чем вторая по водоносности река мира – Конго. Однако Конго благодаря топографическим и геологическим особенностям территории, по которой она протекает, имеет значительно больший гидроэнергетический потенциал, чем Амазонка.
Распределение экономического гидроэнер-гопотенциала по регионам мира показано в таблице 27.
Приведенные в таблице 27 данные позволяют сделать несколько выводов. О том, что крупные регионы Земли по масштабам экономического гидропотенциала «выстраиваются» следующим образом: Зарубежная Азия, Латинская Америка, Африка и Северная Америка, СНГ, зарубежная Европа, Австралия и Океания. О том, что пока еще экономический гидропотенциал Земли используется лишь на 21 % (это означает, что в принципе годовое производство электроэнергии на ГЭС можно увеличить примерно в пять раз). Наконец, о том, что степень освоенности гидроэнергетического потенциала особенно велика в зарубежной Европе, где для сооружения ГЭС использовано уже большинство выгодных речных створов, и в Северной Америке. Наиболее благоприятные ресурсные предпосылки для развития гидроэнергетики имеют Азия, Африка и Латинская Америка. Можно добавить, что на развивающиеся страны в целом приходится еще примерно 2/3 всего неосвоенного мирового гидроэнергопотенциала.
Таблица 27


* Без стран СНГ.
Среди стран по размерам экономического гидроэнергетического потенциала особо выделяется первая пятерка в составе Китая (1260 млрд кВт-ч), России (850 млрд), Бразилии (765 млрд), Канады (540 млрд) и Индии (500 млрд кВт ч), на долю которой приходится почти 1/2 всего этого потенциала. Затем следуют ДР Конго (420 кВт-ч), США (375), Таджикистан (265), Перу (260), Эфиопия (260), Норвегия (180), Турция (125), Япония (115 кВт – ч). Степень использования этого потенциала в странах очень различна. Во Франции, в Швейцарии, Италии, Японии он использован уже почти полностью, в США и Канаде на 38–40 %, тогда как в Китае – на 16, в Индии – на 15, в Перу – на 5, а в ДР Конго – на 1,5 %.
Россия обладает очень большими гидроэнергетическими ресурсами. Ее теоретический потенциал оценивается в 2900 млрд кВт-ч, технический – в 1670 млрд, а экономический, как уже отмечено, – в 850 млрд кВт ч в год. Но распределяется он по стране крайне неравномерно: на европейскую ее часть приходится 15 %, а на азиатскую – 85 %. Освоено из него пока лишь 18 % (в том числе в европейской части – 50 %, в Сибири – 19 и на Дальнем Востоке – 4 %).

Loading...Loading...