Смотреть страницы где упоминается термин гидроэнергетические ресурсы. Гидроэнергетические ресурсы мира и их использование Энергосистема стран Северной Африки

Если возобновимые природные богатства , например гидроэнергетические ресурсы, или новые, еще не освоенные сельскохозяйственные земли включаются в экономический оборот сразу же после появления благоприятных рыночных условий для их использования, то владельцы ресурсного потенциала определенно выигрывают как в случае стабилизации, так и еще более значительно при продолжающемся улучшении конъюнктуры. Напротив, проигрыш может быть связан преимущественно лишь с таким скорым, глубоким и продолжительным ее падением, которое резко снизило бы рентабельность эксплуатации естественных средств производства , не позволив окупить затраты на их освоение. Однако подобные инвестиционные риски присущи в различной степени всякой предпринимательской деятельности . Кроме этих рисков, почти не существует иных побудительных мотивов для искусственной консервации возобновимых природных ресурсов , кроме расчетов на то, что сдерживание производства сможет активно стимулировать рост цен и резко повысить норму и массу прибыли от старых действующих предприятий до величины, превосходящей эффект от расширения сбыта новой продукции.  


Еще раньше началось и более активно расширялось участие алжирского государства в сфере использования углеводородного сырья в его переработке и особенно в распределении жидкого и газообразного топлива внутри страны. После начала разработки нефтегазовых ресурсов они очень быстро заняли основное место в энергопотреблении Алжира, со временем свели на нет применение твердого топлива, а также заметно потеснили гидроэнергетические ресурсы. К середине 60-х годов на нефтепродукты и газ приходилось свыше половины использованных конечных энергоносителей, а к началу следующего десятилетия их доля составляла уже от 2/3 до 3А. Причем примерно 70% нефтепродуктов, реализуемых на внутреннем рынке , потреблялось в государственном секторе алжирской экономики .  

Значительными ресурсами гидроэнергии располагают страны Азии, Африки и Латинской Америки . Во многих развивающихся странах потребность в энергии весьма высока. Это определяет их стремление форсировать использование гидроэнергетических ресурсов (АРЕ, Непал, Индия, Судан, Пакистан, Индонезия и др.).  

Ресурсы топлива и энергии социалистических стран растут быстрыми темпами. Объясняется это большими успехами в поисках и разведке различных минерально-сырьевых ресурсов , в исследовании гидроэнергетических ресурсов, развитии науки и техники в области новых источников энергии. Мировая социалистическая система располагает полным комплексом топливно-энергетических ресурсов, огромным энергетическим потенциалом. Суммарные разведанные и прогнозные запасы каменного угля в странах социализма по общепризнанным оценкам превышают в настоящее время 14,5 трлн, т, кроме того, ресурсы бурых углей и лигнитов достигают 3 600 млрд. т. Доля социалистических стран в мировых запасах угля равна 77%. Ресурсы горючих сланцев по ориентировочным подсчетам составляют не менее половины известных мировых запасов, а торфа - более 75%.  

Дальнейшее развитие энергетики в Корейской Народной Демократической Республике , в Демократической Республике Вьетнам обеспечивается крупными запасами угля и значительными гидроэнергетическими ресурсами. Можно предвидеть, что усиление разведочных работ в МНР, в особенности в связи со вступлением МНР в СЭВ, послужит основой для повышения степени обеспеченности страны собственными ресурсами топлива.  

Ресурсы топлива и энергии стран мировой социалистической системы увеличиваются быстрыми темпами. Объясняется это огромными успехами в поисках и разведке различных минерально-сырьевых ресурсов , в исследовании гидроэнергетических ресурсов, развитии науки и техники в области новых источников энергии.  

Огромная роль в развитии энергетической базы отводится рациональному использованию гидроэнергетических ресурсов нашей страны. В. И. Ленин, выдвигая в первые годы Советской власти идею электрификации, указывал на большое значение освоения водных ресурсов в решении этой задачи.  

Серьезные изменения произошли и в японской электроэнергетике. В 1950 г. ее основой были ГЭС. Однако с середины 50-х годов их строительство было перенесено в районы, удаленные от основных центров потребления электроэнергии. Все более острой становилась проблема изыскания территорий, где можно было бы создавать водохранилища. Дальнейшее освоение гидроэнергетических ресурсов было связано с увеличением капитальных затрат не только на сооружение самих ГЭС, но и на передачу электроэнергии до потребителей.  

Гидроэнергетические ресурсы 2. Численность исследователей  

Графики нагрузки отдельных районных энергосистем могут существенно различаться по конфигурации и аналитическим характеристикам. Прежде всего это связано с разной структурой потребителей и климатическими условиями в регионах страны. Также различаются и способы покрытия региональных нагрузок, т.е. структура генерирующих мощностей, что определяется условиями топливоснабжения электростанций и наличием гидроэнергетических ресурсов. В результате совместного действия всех этих факторов в каждом регионе (энергосистеме) формируется своя стоимость энергии.  

Школьное воспитание, семейное воспитание, трудовое воспитание , физическое воспитание рабочая сила , демократические силы, агрессивные силы дальнейшее движение, ускоренное движение, прогрессивное движение, международное движение дальнейший подъем, систематический подъем, экономический подъем климатические условия, при условии, природные условия, решающее условие физический прибор, акустический прибор, электронный прибор, электрический прибор заводской транспорт, внутризаводской транспорт , водный транспорт , воздушный транспорт , подземный транспорт счетная машина, франкировальная машина, электронная машина материальные ресурсы , гидроэнергетические ресурсы, финансовые ресурсы легкая промышленность , тяжелая промышленность, радиоэлектронная промышленность, промышленность стройматериалов профсоюзная конференция, всероссийская конференция, международная конференция , заводская конференция.  

Франция обладает богатыми и разнообразными гидроэнергетическими ресурсами. Однако географически они размещаются неравномерно, в основном - в горных районах, расположенных в южной части страны. Строительство гидростанций привело к появлению энергоемких отраслей промышленности (особенно электрохимической) с постоянным графиком потребления . Впоследствии влияние этих исторических и географических факторов было несколько ослаблено объединением электростанций и сетей и созданием объединенной энергосистемы Север--Юг. Однако некоторые особенности сохраняются и в настоящее время. Они иллюстрируются приведенными ниже графиками, характеризующими режим нагрузки сухого, холодного дня в декабре 1965 г. (рис. 1-4).  

Наличие значительных гидроэнергетических ресурсов делает французскую энергетику вдвойне уязвимой в засушливые годы. Для покрытия максимальных нагрузок необходимо наличие достаточной располагаемой мощности. Но, кроме того, необходимо ограничивать сработку водохранилищ, чтобы они не оказались полностью опорожненными раньше, чем это допустимо, - до конца зимы. В противном случае может иметь место вынужденная остановка гидростанций не из-за их недостаточной мощности, а из-за отсутствия достаточного для их работы количества воды после прохождения максимума нагрузки. Продолжительность критического периода, в течение которого использование гидростанций, имеющих водохранилища, совершенно необходимо, составляет за 5 мес. (с октября по февраль) примерно 1 600 ч ра-  

Наличие (запасы) водных ресурсов изучается статистикой исходя из двух критериев как запасы воды и как запасы гидроэнергетических ресурсов.  

Механическая энергия водного потока может быть превращена в электрическую и образует гидроэнергетические ресурсы. Их потенциальный размер определяется мощностью потоков (количеством протекающей в потоке воды в 1 с) и высотой падения воды. Этот потенциальный размер энергетических ресурсов определяется в расчете на среднегодовой и минимальный стоки и обычно выражается в киловаттах.  

В Европейской части СССР большое значение имеет комплексное использование гидроэнергетических ресурсов рек Волги, Камы и Днепра.  

В горных районах Средней Азии и Кавказа эффективному использованию гидроэнергетических ресурсов способствует значительная водность и большие падения водотоков, позволяющие сооружать гидроузлы с большой выработкой электроэнергии. В предгорных районах имеется возможность эффективного сочетания использования водных ресурсов для энергетики и орошения земель.  

Италия бедна топливными ресурсами и многими видами пром. сырья. Имеются запасы цинка, свинца, серы, ртути, пиритов, бокситов, мрамора. Значительны гидроэнергетические ресурсы. Наиболее развитые отрасли пром-сти машиностроение (автомобилестроение, судостроение, точное машиностроение, электротехника, приборостроение), пищевая, химическая, текстильная, металлургическая. Значительное развитие получили произ-во вычислительной техники, роботов и электронного оборудования. В 1986 г. произведено 23 млн т стали, 12 млн т чугуна, 40 млн т цемента, 192 млрд кВт-ч электроэнергии, 1830 тыс. автомобилей, из них 1650 тыс. легковых, добыто 2,3 млн т нефти, 14 млрд м 3 газа.  

Бутан относится к наименее развитым странам мира . Располагает крупными гидроэнергетическими ресурсами (до 20 тыс. МВт, оценка ООН), значительными полезными ископаемыми , еще не полностью разведанными (известняк, каменный уголь, доломит, гипс, медь, цинк, свинец и др.).  

Основа экономики страны - сел. хоз-во и горнодобывающая пром-сть. Гайана занимает ведущее место в мире по добыче бокситов (в 1987 г. добыто 1,1 млн т). Имеются запасы марганцевой и железной руд, золота, алмазов и др. Гайана обладает значительными гидроэнергетическими ресурсами. Обрабатывающая пром-сть развита слабо, в основном специализируется на переработке пром. сырья и с.-х. продуктов.  

СССР - огромная страна, занимающая территорию площадью 22,4 млн. кв. км расстояния с Востока на Запад 10 тыс. км и с Севера на Юг 5 тыс. км. Природные ресурсы (уголь, нефть, газ, минеральное сырье , лес, гидроэлектрическая энергия, вода и т. п.) нашей страны огромны и разнообразны, но территориально они размещены неравномерно. Резко различны условия залегания многих полезных ископаемых и экономическая эффективность их добычи и использования. От дореволюционной России нам досталось нерациональное размещение производительных сил. Свыше s/4 всей промышленной продукции в 1913 г. производилось в Московском, Петербургском и Ивановском районах страны и на Украине. Вне промышленного развития оставались Восточные районы страны с их исключительно богатыми сырьевыми, топливными и гидроэнергетическими ресурсами. Достаточно сказать, что на долю Урала, Сибири, Дальневосточного края и Средней Азии приходилось только 8,3% промышленной продукции России. А ведь в Восточных районах страны сосредоточено 75% всех имеющихся в СССР запасов угля, до 80% гидроэнергетических ресурсов, 4Д лесных богатств, основные запасы цветных и редких металлов, огромные ресурсы химического сырья, железных руд и строительных материалов, огромные запасы нефти и газа. При этом условия залегания природных ископаемых в Восточных районах страны таковы, что они обеспечивают высокую экономическую эффективность их добычи. Себестоимость угля и гидроэнергии здесь в 2 раза меньше, чем в других районах страны. Добыча угля ведется, как правило, открытым способом, вследствие чего снижаются капиталовложения и резко возрастает производительность труда.  

В статистике водных богатств выделяется статистика водных ресурсов , завершаемая построением водного баланса страны и отдельных территорий статистика гидроэнергетических ресурсов статистика богатств животного и растительного мира морей, океанов рек и других водоемов (изучающая, например, запасы рыбы, морского зверя, различных водорослей) статистика вод, богатых минеральными веществами и тепловой энергией лечебного и технического назначения.  

Важнейшими показателями, характеризующими гидроэнергетические ресурсы, являются площадь бассейна (тыс. км2) число учтенных рек суммарная длина учтенных рек (км) суммарная потенциальная мощность (среднегодовая и минимальная (тыс. кВт)) удельная мощность (кВт/км2).  

Существенное влияние на развитие и размещение промышленности в стране оказывает строительство гидроэлектростанций. В довоенные годы на базе электроэнергии Днепровской гидроэлектростанции имени В. И. Ленина был сооружен комплекс энергоемких промышленных производств алюминия и магния, специальных сталей и ферросплавов. В послевоенные годы началось широкое освоение наиболее эффективных гидроэнергетических ресурсов Сибири. Построенные Иркутская, Красноярская и Братская гидроэлектростанции явились основой для широкого развития промышленности в южной части Восточной Сибири . В Основных направлениях развития народного хозяйства СССР на 1976-1980 годы предусмотрено строительство новых крупных гидро-  

Нет единой методики определения гидроэнергетического потенциала. По рекомендации Европейской экономической комиссии ООН при расчетах гидроэнергетических ресурсов принимаются следующие расчетные коэффициенты теоретический потенциал, определяющий ресурсы гидроэнергии при к. п. д., равном единице технический, учитывающий потери воды и напора экономический, учитывающий возможности использования гидроресурсов. По данным Гидропроекта и Гидроэнергопроекта технически возможный коэффициент использования прогнозных гидроэнергоресурсов в СССР составляет 0,57 и колеблется в диапазоне от 0,4 до 0,76.  

Советское государство, приступая к созданию мощной энергетической базы, располагало крайне скудными данными о действительных ресурсах гидроэнергии в стране. Общая среднегодовая мощность гидроэнергетических ресурсов была определена в 20 млн. кет, что, как теперь известно, в 20 раз меньше реально исчисленных гидроэнергоресурсов.  

Вознесенский А. Н. Гидроэнергетические ресурсы СССР. Энергетика мира. МИРЭК, Вена, 1956.  

Гидроэнергетические ресурсы в настоящее время единственный источник возобновляемой энергии, который позволяет получать дешевую энергию в достаточно больших количествах. Круговорот воды в природе, который мы используем как энергию рек, возникает благодаря испарению и движению облаков, при нагреве земной поверхности солнцем.

Гидроэнергетические ресурсы на Земле оцениваются в 33000 ТВт·ч в год, но по техническим и экономическим соображениям из всех запасов доступны от 4 до 25%. Общий гидропотенциал рек России исчисляется в 4000 млн. МВт (450 тыс. МВт среднегодовой установленной мощности), что составляет приблизительно 10…12% от мирового. Теоретически мощность водотока можно определить по формуле:

Где Q – расход водотока м 3 /с; H – падение уровня воды, м.

Данные о гидроресурсах различных стран мира

Гидроэнергетика имеет ряд преимуществ по сравнению с самым распространённым способом получения энергии на тепловых электростанциях от сжигания газа, угля и нефтепродуктов. Самое главное преимущество в том, что гидроэнергия может замещать значительную долю невозобновляемых энергоносителей, запасы которых ограничены и уже подходят к концу. Важное достоинство ГЭС в том, что их работа в отличии от ТЭС не загрязняет воздух и окружающую среду. Плотины ГЭС могут накапливать огромное количество энергии, а производство электрической энергии легко регулировать пуском или остановкой дополнительных генераторов на электростанции. Гидроэлектростанции хорошо подходят для покрытия пиковых нагрузок. Недостатками гидроэлектростанций можно считать затопление больших площадей, а также заиливание дамбы и речных протоков.

Строительство ГЭС дело довольно дорогое и длительное по времени, зато в дальнейшем, при небольших эксплуатационных расходах в течение многих десятилетий можно получать дешевую энергию. Всего через несколько десятилетий легко доступные не возобновляемые энергоносители в основном будут израсходованы, а стоимость оставшихся сильно возрастёт. Серьёзно увеличатся транспортные и другие производственные расходы. Поэтому именно сейчас целесообразно заниматься строительством новых и модернизацией старых ГЭС.

Определённый интерес представляет энергия приливов и отливов, как экологически чистые и дающие недорогую энергию. В некоторых местах, в том числе и в России высота приливов может достигать 10 и более метров. Построенные во Франции в СССР и в других странах приливные электростанции доказали их перспективность как источника энергии. У приливных электростанций дважды в сутки меняется направление движения воды, поэтому их мощность непостоянна в течение суток. Такие электростанции целесообразно использовать в составе энергосистем, когда есть возможность изменять мощность других электростанций. При наличии нескольких бассейнов для накопления воды и при использовании гидроагрегатов в режиме двигателя насоса, позволяет несколько уменьшить неравномерность выдаваемой мощности. Чаще всего для строительства приливных электростанций выбирают места, где есть природные заливы с узким протоком, в котором и размещают генераторы электростанций. Таких мест не очень много, но по некоторым оценкам 20% энергии для Европы можно получать от недорогих и экологичных приливных электростанций. Существует несколько проектов строительства приливных электростанций большой мощности в России. В мире построены строятся и проектируются несколько подобных электростанций.

Огромный потенциал энергии имеют морские волны, а также энергия морских течений. В мире довольно много изобретений и проектов по их использованию. Изготовлены и опробованы опытные образцы, однако из-за технических и конструктивных трудностей, широкого применения эти источники энергии не получили.

С использованием материалов ГФ Быстрицкая "Общая энергетика" и др.

Содержание статьи

ГИДРОЭНЕРГЕТИКА, использование энергии естественного движения, т.е. течения, водных масс в русловых водотоках и приливных движениях. Чаще всего используется энергия падающей воды. До середины 19 в. для этого применялись водяные колеса, преобразующие энергию движущейся воды в механическую энергию вращающегося вала. Позднее появились более быстроходные и эффективные гидравлические турбины. До конца 19 в. энергия вращающегося вала использовалась непосредственно, например для размола зерна или для приведения в действие кузнечных мехов и молота. В наши дни практически вся механическая энергия, создаваемая гидравлическими турбинами, преобразуется в электроэнергию.

Почти вся гидравлическая энергия представляет собой одну из форм солнечной энергии и поэтому относится к возобновляемым природным энергоресурсам. Под лучами солнца испаряется вода из озер, рек и морей. Образуются облака, идет дождь, и вода в конце концов возвращается в водные бассейны, т.е. туда, откуда испарилась. С таким круговоротом воды в природе связаны колоссальные количества энергии. Географическая область умеренного климата высотой над уровнем моря около 2500 м и количеством осадков порядка 1000 мм/год теоретически могла бы непрерывно давать более 750 кВт с каждого квадратного километра площади. На самом деле можно использовать лишь малую долю всего количества осадков и лишь ничтожную долю высоты, с которой они стекают. Кроме того, обычно КПД современных гидротурбин и генераторов не превышает 86%. Тем не менее производительность гидроэлектростанций (ГЭС) в США составляет около 75 000 МВт, и по крайней мере еще 50 000 МВт можно получить дополнительно.

Гидроэнергетические ресурсы.

Уровень развития гидроэнергетики в разных странах и на разных континентах неодинаков. Больше всего гидроэлектроэнергии производят Соединенные Штаты, за ними идут Россия, Украина, Канада, Япония, Бразилия, КНР и Норвегия.

Неосвоенные гидроэнергетические ресурсы Африки, Азии и Южной Америки открывают широкие возможности строительства новых ГЭС. На Северную Америку, в распоряжении которой находится всего около 13% мировых ресурсов гидроэнергетики, приходится около 35% полной мощности действующих ГЭС. В то же время Африка (21% мировых гидроэнергетических ресурсов) и Азия (39%) вносят лишь 5 и 18% соответственно в мировую выработку гидроэлектроэнергии. Из остальных континентов Европа (21% ресурсов) дает 31% выработки, а Южная Америка и Австралия, вместе взятые, располагая примерно 15% ресурсов, дают только 11% производимой в мире гидроэлектроэнергии.

Плотины.

Вода, вращающая гидравлические турбины, обычно берется из искусственных водохранилищ, созданных путем перекрытия реки плотиной. Плотина повышает напор воды, поступающей на турбины, и тем самым увеличивает мощность электростанции. Расход воды из водохранилища через турбины можно регулировать. Водохранилище, кроме того, служит отстойником для песка, ила и мусора, приносимых естественными водотоками. Построив плотину с водохранилищем, можно предотвратить паводковые затопления, а также создать надежный запас воды для водоснабжения населения и промышленности.

Гидравлические турбины.

Гидравлическая турбина преобразует энергию воды, текущей под напором, в механическую энергию вращения вала. Существуют разные конструкции гидротурбин, соответствующие разным скоростям течения и разным напорам воды, но все они имеют только два лопастных венца. (Паровые и газовые турбины – со многими венцами лопаток.) К лопастям первого венца относятся профилированные колонны статора и лопатки направляющего аппарата, причем последние обычно позволяют регулировать расход воды через турбину. Второй венец образуют лопасти рабочего колеса турбины. Два последовательных лопастных венца (статора и колеса) составляют ступень турбины. Таким образом, в гидротурбинах имеется только одна ступень.

Ось вращения турбины, рассчитанной на большой расход и малый напор, обычно располагают горизонтально. Такие турбины называют осевыми или пропеллерными. В гидроагрегатах приливной ГЭС, построенной в заливе Фанди (провинция Новая Шотландия, Канада), ротор генератора закреплен на периферии рабочего колеса, охватывая его. Такая конструкция генератора требует меньше железа и меди. Но чаще турбину располагают вертикально и выводят ее вал из пологого S-образного водяного канала через уплотнение к внешнему гидрогенератору.

Во всех крупных осевых турбинах лопасти рабочего колеса могут поворачиваться в соответствии с изменениями напора, что особенно ценно в случае приливных ГЭС, всегда работающих в условиях переменного напора. Расчетный диапазон напора для горизонтальных осевых турбин составляет 3–15 м. Вертикальные осевые турбины используются при напорах от 5 до 30 м. Конструкцию поворотно-лопастных турбин предложил в 1910 австрийский инженер В.Каплан. Лопатки их направляющего аппарата поворачиваются на осях, параллельных валу, и турбина снабжена подводящей камерой, к которой подходит водовод.

При повышенных напорах (от 12 до 300 м) более предпочтительны радиально-осевые турбины, в которых вода, входя по радиусу, выходит в осевом направлении. Такие турбины существенно усовершенствовал американский инженер Дж.Френсис, начавший эксперименты с ними в каналах под Лоуэллом (шт. Массачусетс, США) в 1851. Радиально-осевые турбины обычно отличаются лопатками большого диаметра, жестко закрепленными на рабочем колесе, но направляющий аппарат в них такого же вида, как и в поворотно-лопастных турбинах.

Турбины для напоров, превышающих 300 м, совершенно иные, нежели описанные выше. В них имеются от одного до шести сопел кругового сечения, создающих водяные струи, которые падают на лопасти рабочего колеса. Расход воды регулируется перекрытием проходного сечения сопел. Рабочее колесо работает не под водой, как в осевой и радиально-осевой турбинах, а в воздухе. Высокоскоростная свободная водяная струя бьет в лопасть рабочего колеса, которая имеет форму двойного ковша. Конструкция ковшовой гидротурбины была предложена в 1878 и запатентована в 1880 американским инженером А.Пелтоном.

Ковшовая гидротурбина называется активной (свободноструйной), поскольку в соплах напор падает до нуля и сила, действующая на лопасти, создается ударом струи. Осевая же и радиально-осевая турбины относятся к реактивным (напороструйным), так как поток продолжает ускоряться в проходах между лопастями рабочего колеса и крутящий момент частично создается реакцией, ответственной за ускорение.

Гидрогенераторы.

Гидрогенераторы для ГЭС специально проектируются соответственно частоте вращения и мощностью гидротурбин, для которых они предназначаются. Гидрогенераторы на большую единичную мощность обычно устанавливают вертикально на подпятниках с соответствующими направляющими подшипниками. Они, как правило, трехфазные и рассчитаны на стандартную частоту. Система воздушного охлаждения – замкнутая, с теплообменниками воздух – вода. Предусматривается возбудитель.

Коэффициент нагрузки.

Немногие ГЭС все время работают на полной мощности. Иногда это невозможно из-за нехватки воды, а иногда лишено смысла из-за отсутствия нагрузки. Коэффициент нагрузки электростанции – это отношение средней потребляемой мощности за данный период к пиковой мощности в этот же период. При использовании накопительного водохранилища, в котором вода аккумулируется в часы пониженных нагрузок, ГЭС на водотоке, который годен для выработки лишь 10 МВт, может обслуживать нагрузку в 15–20 МВт, если коэффициент нагрузки лежит в пределах от 0,50 до 0,67. Это относится к отдельной ГЭС, самостоятельно обслуживающей свою нагрузку. Если же она включена в энергетическую систему, в которую входят и другие электростанции, то может быть переведена в режим с пиковой мощностью, значительно превышающей 20 МВт, но при меньшем коэффициенте нагрузки.

В энергетические системы, как правило, входят не только ГЭС. Если в системе имеются и тепловые электростанции (ТЭС), то ГЭС может работать по своему графику нагрузки, отличному от общего. От нее требуется, чтобы она приносила наибольшую пользу всей системе. Для этого ГЭС может, например, работать на максимально возможной мощности при имеющемся запасе воды, чтобы экономилось топливо, или же работать только в часы пиковой нагрузки системы, чтобы снизить требуемую мощность ТЭС и, следовательно, необходимые инвестиции на их сооружение и эксплуатацию.

Гидроаккумулирующие электростанции (ГАЭС).

В часы малых нагрузок гидроагрегаты ГАЭС перекачивают воду из низового водоема в верховой, а в часы повышенных – используют запасенную воду для выработки пиковой энергии. Работа в турбинном и насосном режимах обеспечивается обратимыми гидроагрегатами, состоящими из синхронной электрической машины и гидравлической насос-турбины.

На перекачку воды в верхний водоем из нижнего затрачивается иногда в полтора раза больше электроэнергии, чем затем из нее вырабатывается. Но это оправдано с точки зрения экономики энергетической системы. Дело в том, что энергию, затрачиваемую на перекачку, вырабатывают ТЭС энергетической системы в часы пониженной нагрузки, когда ее стоимость понижается. Таким образом дешевая «ночная» электроэнергия превращается в ценную «пиковую», что повышает экономическую эффективность системы в целом.

Преимущества ГАЭС состоят в том, что у них может быть повышенный напор, для них проще выбрать место сооружения и они требуют меньше воды (поскольку вода циркулирует между верхним и нижним водоемами). Благодаря повышенному напору можно использовать более крупные и эффективные гидрогенераторы. Но существуют и ГЭС смешанного типа (ГЭС – ГАЭС), на которых часть гидроагрегатов работает как в турбинном, так и в насосном режиме, а остальные – только в турбинном (за счет приточности к верхнему водоему). Такие электростанции часто позволяют накапливать больше воды и, следовательно, вырабатывать больше электроэнергии в более длительные периоды пиковой нагрузки, обеспечивая повышенную гибкость в работе.

Приливные электростанции (ПЭС).

Для создания экономичной приливной электростанции необходимо сочетание необычайно большого перепада уровней при приливе и отливе (6 м и более) с особенностями береговой линии, позволяющими создать плотину и водный бассейн соответствующих размеров. На Земле не так много мест, где выполняются эти условия: побережья штата Мэн (США) и провинции Нью-Брансуик (Канада), некоторые заливы Желтого моря, Персидский залив, Аляска, некоторые места Аргентины, юг Англии, север Франции, север европейской России и ряд заливов Австралии. Но даже в таких подходящих местах, как залив Пассамакуодди на границе штата Мэн и провинции Нью-Брансуик, ПЭС в настоящее время вряд ли могли бы по стоимости вырабатываемой электроэнергии конкурировать с современными ТЭС.

В проектах ПЭС обычно предусматривается создание двух бассейнов – верхового и низового – с водопропускными отверстиями и затворами. Верховой бассейн наполняется во время прилива, а затем опорожняется в низовой, опорожнившийся при отливе.

Для оценки потенциальных гидроэнергетических ресурсов (без учета потерь при преобразовании водной энергии в электрическую) определяется валовой гидроэнергетический потенциал. Он характеризуется среднемноголетней годовой потенциальной энергией Э по т и среднегодовой потенциальной мощностью N по т .

Годовая потенциальная энергия, исходя из 8760 ч использования в году потенциальной мощности, может определяться по формуле

Э пот = 8760 N пот .

Валовой теоретический гидроэнергетический потенциал рек мира оценивается в 39100 млрд. кВт·ч.

Технический гидроэнергетический потенциал характеризует ту часть водной энергии, которую можно использовать технически.

При определении технического гидроэнергетического потенциала учитываются все потери, связанные с производством электроэнергии, включая невозможность полного использования стока, что вызвано недостаточной емкостью водохранилищ и ограничением мощности ГЭС, в связи с ограниченным использованием верховых и низовых участков рек с малой потенциальной мощностью, потерями на испарение с поверхности водохранилищ и на фильтрацию из водохранилищ, потерями напора и мощности в проточном тракте и энергетическом оборудовании ГЭС.

Экономически эффективный гидроэнергетический потенциал определяет ту часть технического потенциала, которую в настоящее время экономически целесообразно использовать. Следует отметить условность определения экономически эффективного потенциала, так как он базируется на техникоэкономическом сравнении с альтернативными источниками электроэнергии, в качестве которых выступают тепловые электростанции, и не учитывает достаточно полно эффективность комплексного использования водных ресурсов. Кроме того, в связи с ростом стоимости органического топлива, а также увеличением стоимости строительства ТЭС с учетом ужесточения требований по охране окружающей среды и др. можно прогнозировать увеличение в перспективе экономически эффективного потенциала, который будет приближаться к техническому гидроэнергетическому потенциалу.

Таблица 2.1 Данные о гидроэнергетическом потенциале и его использовании в странах, имеющих наибольшие гидроэнергетические ресурсы


Гидроэнергетический потенциал, выработка

Технический, млрд.кВт·ч

Экономически эффективный, млрд.кВт·ч

Мощность, млн. кВт

Выработка

млрд. кВт·ч

% от экономически эффективного

Бразилия

Республика Конго

308,8 (2000 г.)

Таджикистан

Венесуэла

Глобальное потепление климата на Земле, возможность которого обосновывается многими исследованиями, может повлиять на сток рек и гидроэнергетические ресурсы. Так, по приближенной оценке среднемноголетняя выработка ГЭС в России может увеличиться до 12%.

Мировой технический гидроэнергетический потенциал (на уровне 2008 г.) оценивается в 14650 млрд. кВт·ч, а экономически эффективный – в 8770 млрд. кВт·ч. Распределение экономического эффективного потенциала и его использования по континентам на уровне 2000 г. приведено на рис. 2.2.

Несмотря на резкое повышение требований по охране окружающей среды, за 25 лет с 1975 по 2000 гг. мировой объем выработки электроэнергии на ГЭС вырос с 1165 до 2650 млрд. кВт·ч и составил около 19% мирового производства электроэнергии. При этом используется только треть экономически эффективного гидроэнергетического потенциала. Во всем мире установленная мощность ГЭС, находящихся в эксплуатации, в 2000 г. составила 670 млн.кВт, а к 2008 г. достигла 887 млн.кВт, а выработка – 3350 млрд.кВт·ч. Данные о гидроэнергетическом потенциале стран, обладающих наибольшими гидроэнергетическими ресурсами, и его использовании на уровне 2008 г. приведены в таблице 2.1.

Полный объем всех водохранилищ в мире превысил 6 тыс. км 3 (ресурсы речного стока оцениваются в 37 тыс. км 3 ). На средние и большие водохранилища объемом более 100 млн. м 3 приходится свыше 95% суммарного объема всех водохранилищ, причем подавляющее большинство этих водохранилищ имеют ГЭС.

Гидроэнергические ресурсы не беспредельны, и приходит понимание, что они такое же национальное богатство, как нефть, газ, уголь, уран, в отличие от которых являются возобновляемыми ресурсами.

Самые крупные эксплуатируемые ГЭС имеют установленную мощность: Три ущелья (Китай) – 18,2 млн. кВт, Итайпу (Бразилия – Парагвай) – 12,6 (14,0) млн.кВт, Guri (Венесуэла) – 10,3 млн.кВт, Тукуру (Бразилия) – 7,2 млн.кВт, Гренд Кули (США) – 6,5 млн.кВт, Саяно–Шушенская – 6,4 млн.кВт и Красноярская (Россия) – 6 млн.кВт, Черчилл-Фолс – 5,4 млн.кВт и Ла Гранде (Канада) – 5,3 млн.кВт.

Таблица 2.2 Данные о гидроэнергетическом потенциале стран, максимально его использующих (на уровне 2008 г.)


Гидроэнергетический потенциал, выработка, млрд. кВт·ч

Освоение гидроэнергетического потенциала

Технический

Экономически эффективный

Мощность, млн. кВт

Выработка

млрд. кВт·ч

% от экономически эффективного потенциала

Европа

Швейцария

Германия

Финляндия

Азия

Северная и Центральная Америка

Южная Америка

Венесуэла

Парагвай

Австралия и Океания

Австралия

Анализируя мировой опыт развития энергетики, следует отметить, что практически все наиболее развитые страны в первую очередь интенсивно осваивали свои гидроэнергетические ресурсы и достигли высокого уровня их использования (табл. 2.2). Так, гидроэнергетические ресурсы в США использованы на 82%, в Японии – на 90%, в Италии, во Франции, в Швейцарии – на 95–98%.

В Украине экономически эффективный гидроэнергетический потенциал использован на 60%, в России – на 21%.

В мире сохраняется тенденция к постоянному увеличению использования вечно возобновляемых гидроэнергетических ресурсов, особенно в слаборазвитых и развивающихся странах, развитие энергетики в которых идет по пути первоочередного применения именно гидроэнергетических ресурсов. При этом строительство ГЭС в основном перемещается в предгорья и горные районы, где их отрицательное влияние на окружающую среду значительно уменьшается.


«Итайпу» – одна из крупнейших ГЭС мира на реке Парана, за 20 км до г. Фос-ду-Игуасу (Foz do Iguacu) на границе Бразилии и Парагвая. По мощности уступает лишь ГЭС «Три ущелья» (Китай), однако на 2008 год была крупнейшей по выработке электроэнергии.


ГЭС «Три ущелья» – самая большая за всю историю мировой гидроэнергетики. В состав сооружений ГЭС входят: бетонная глухая плотина, здание ГЭС с 26 агрегатами, водосбросная плотина, 2 нитки шлюзов по 5 камер с напором на каждую камеру 25,4 м, судоподъемник. Полная и полезная емкость водохранилища – 39,3 и 22,1 млн. м 3 , его максимальная глубина – 175 м. Установленная мощность ГЭС 18 200 МВт.

Человек еще в глубокой древности обратил внимание на реки как на доступный источник энергии. Для использования этой энергии люди научились строить водяные колеса, которые вращала вода; этими колесами приводились в движение мельничные постава и другие установки. Водяная мельница является ярким примером древнейшей гидроэнергетической установки, сохранившейся во многих странах до нашего времени почти в первозданном виде. До изобретения паровой машины водная энергия была основной двигательной силой на производстве. По мере совершенствования водяных колес увеличивалась мощность гидравлических установок, приводящих в движение станки и т.д. В 1-й половине XIX века была изобретена гидротурбина, открывшая новые возможности по использованию гидроэнергоресурсов. С изобретением электрической машины и способа передачи электроэнергии на значительные расстояния началось освоение водной энергии путем преобразования ее в электрическую энергию на гидроэлектростанциях (ГЭС).

Общие сведения

Гидроэнергоресурсы - это запасы энергии текущей воды речных потоков и водоемов, расположенных выше уровня моря (а также энергии морских приливов).

Существенную особенность в оценку гидроэнергоресурсов вносит то обстоятельство, что поверхностные воды - важнейшая составляющая часть экологического баланса планеты. Если все остальные виды первичных энергоресурсов используются преимущественно для выработки энергии, то гидравлические ресурсы должны оцениваться и с точки зрения возможностей осуществления промышленного и общественного водоснабжения, развития рыбного хозяйства, ирригации, судоходства и т.д.

Характерна для гидроэнергоресурсов и та особенность, что преобразование механической энергии воды в электрическую происходит на ГЭС без промежуточного производства тепла.

Энергия рек возобновляема, причем цикличность ее воспроизводства полностью зависит от речного стока, поэтому гидроэнергоресурсы неравномерно распределяются в течение года, кроме того их величина меняется из года в год. В обобщенном виде гидроэнергоресурсы характеризуются среднемноголетней величиной (как и водные ресурсы).

В естественных условиях энергия рек тратится на размыв дна и берегов русла, перенос и переработку твердого материала, выщелачивание и перенос солей. Эта эрозионная деятельность может приводить и к вредным последствиям (нарушение устойчивости берегов, наводнения и др.), и иметь полезный эффект как, например, при выносе из горной породы руды и минеральных веществ, формирование, вынос и накопление различных стройматериалов (галечник, песок). Поэтому использование гидроресурсов для выработки электроэнергии наносит ущерб формированию других важных ресурсов.

Использование гидроэнергетических ресурсов занимает значительное место в мировом балансе электроэнергии. В 70-80-х годах вес гидроэнергии находился на уровне примерно 26 % всей выработки электроэнергии мира, достигнув значительной абсолютной величины. Выработка электроэнергии ГЭС мира после 2-й Мировой войны росла большими темпами: с 200 млрд. квт-ч в 1946 г. до 860 млрд. квт-ч в 1965 г. и 975 млрд. квт-ч в 1978 г. А сейчас в мире вырабатывается 2100 млрд. квт-ч гидроэергии в год, а к 2000 г. эта величина еще вырастет. Ускоренное развитие гидроэнергетики во многих государствах мира объясняется перспективой нарастания топливно-энергетических и экологических проблем, связанных с продолжением нарастания выработки электроэнергии на традиционных (тепловых и атомных) электростанциях при слабо разработанной технологической основе использования нетрадиционных источников энергии. Основная часть мировой выработки ГЭС падает на Северную Америку, Европу, Россию и Японию, в которых производится до 80 % электроэнергии ГЭС мира.

В ряде стран с высокой степенью использования гидроэнергоресурсов наблюдается снижение удельного веса гидроэнергии в электробалансе. Так, за последние 40 лет удельный вес гидроэнергии снизился в Австрии с 80 до 70 %, во Франции с 53 до очень малой величины (за счет увеличения производства электроэнергии на АЭС), в Италии с 94 до 50 % (это объясняется тем, что наиболее пригодные к эксплуатации гидроэнергоресурсы в этих странах уже почти исчерпаны). Одно из самых больших снижений произошло в США, где выработка электроэнергии на ГЭС в 1938 г. составляла 34 %, а уже в 1965 г. - только 17 %. В то же время в энергетике Норвегии эта доля составляет 99,6 %, Швейцарии и Бразилии - 90 %, Канады - 66 %.

Гидроэнергетический потенциал и его распределение по континентам и странам

Несмотря на значительное развитие гидроэнергетики в мире в учете мировых гидроэнергоресурсов до сих пор нет полного единообразия и отсутствуют материалы, дающие сопоставимую оценку гидроэнергоресурсов мира. Кадастровые подсчеты запасов гидроэнергии различных стран и отдельных специалистов отличаются друг от друга рядом показателей: полнотой охвата речной системы отдельной страны и отдельных водотоков, методологией определения мощности; в одних странах учитываются потенциальные гидроэнергоресурсы, в других вводятся различные поправочные коэффициенты и т.д.

Попытка упорядочить учет и оценку мировых гидроэнергоресуров была сделана на Мировых энергетических конференциях (МИРЭК).

Было предложено следующее содержание понятия гидроэнергетического потенциала - совокупность валовой мощности всех отдельных участков водотока, которые используются в настоящее время или могут быть энергетически использованы. Валовая мощность водотока, характеризующая собой его теоретическую мощность, определяется по формуле:

N квт = 9,81 QH,

где Q - расход водотока, м3/с; H - падение, м.

Мощность определяется для трех характерных расходов: Q = 95 % - расход, обеспеченностью 95 % времени; Q = 50 % - обеспеченностью 50 % времени; Qср - среднеарифметический.

Существенным недостатком этих предложений было то, что они предусматривали учет гидроэнергоресурсов не по всему водотоку, а только по тем его участкам, которые представляют энергетический интерес. Отбор же этих участков не мог быть твердо регламентирован, что на практике приводило к внесению в подсчеты элементы субъективизма. В табл. 1 приводятся подсчитанные для шестой сессии МИРЭК данные по гидроэнергоресурсам отдельных стран.

Вопросу упорядочения учета гидроэнергоресурсов было уделено большое внимание в работе Комитета по электроэнергии Европейской экономической комиссии ООН, которая установила определенные рекомендации по данному вопросу. Этими рекомендациями устанавливалась следующая классификация в определении потенциала:

Теоретический валовой (брутто) потенциал гидроэнергетический потенциал (или общие гидроэнергетические ресурсы):

1. поверхностный, учитывающий энергию стекающих вод на территории целого района или отдельно взятого речного бассейна;

2. речной, учитывающий энергию водотока.

страна страна мощность брутто, млн квт при расходах
95% обесп. 50% обесп. средн. 95% обесп. 50% обесп. средн
Америка Азия
Бразилия 16,5 Индия 31,4
Венесуэла 4,4 26,8 26,5 Пакистан 6,6 13,1 9,8
Канада 44,8 75,9 Япония 9,4 17,5
США 29 63,5 98,2 Турция 10,5
Чили 9,5 22,6 26,6 Океания
Европа Австралия 1,2 2,9 3,9
Австрия 3,2 7 Африка
Греция 9,6 Кот-д"Ивуар 0,5 3,5 7,5
Испания 14,9 Габон 6 18 21,9
Италия 9,2 13,3 17,4 Гвинея 0,5 3,5 8
Норвегия 18,4 20,3 21,4 Камерун 4,8 18,3 28,7
Португалия 0,7 2,7 5,8 Конго (Браззавиль) 3 9 11,3
Финляндия 1,9 Мадагаскар 14,3 49 80
Франция 7,7 Мали 1 4,4
Германия 1,6 2,8 Сенегал 1,1 5,5
Швеция 22,5 ЦАР 3,5 10,5 13,8
Югославия 2,4 6,3 10,1 Чад 2,5 4,3

Эксплуатационный чистый (или нетто) гидроэнергетический потенциал:

1. технический (или технические гидроэнергоресурсы) - часть теоретического валового речного потенциала, которая технически может быть использована или уже используется (мировой технический потенциал оценивается приблизительно в 12300 млрд. квт-ч);

2. экономический (или экономические гидроэнергоресурсы) - часть технического потенциала, использование которой в существующих реальных условиях экономически оправдано (т.е. экономически выгодно для использования); экономические гидроэнергоресурсы в отдельных странах приведены в табл.4.

В соответствии с этим полная величина мировых потенциальных гидроэнергоресурсов речного стока приведена в табл.2.

Табл.2 Гидроэнергетические ресурсы (полный гидроэнергетический речной потенциал) отдельных континентов

континент гидроэнергоресурсы % от итога по земному шару удельная величина гидроэнергоресурсов, квт/кв.км
млн. Квт млрд. Квт-ч
Европа 240 2100 6,4 25
Азия 1340 11750 35,7 30
Африка 700 6150 18,7 23
Северная Америка 700 6150 18,7 34
Южная Америка 600 5250 16 33
Австралия 170 1500 4,5 19
Итого по земному шару 3750 32900 100 28
бывший СССР 450 3950 12 20

Приведенные расчеты в свое время внесли существенные изменения в прежние представления о распределении гидроэнергоресурсов по континентам. Особенно большие изменения были получены по Африке и Азии. Эти данные показывают, что на Азиатском континенте сосредоточено почти 36 % мировых запасов гидроэнергии, в то время как в Африке, которая считалась наиболее богатой гидроэнергоресурсами, сосредоточено около 19 %. В табл. 3 приводится сопоставление данных, характеризующих распределение гидроэнергоресурсов по континентам, полученных по разным подсчетам. Табл.3 Насыщенность гидроэнергоресурсами территории континентов, тыс. квт-ч на 1 кв. км

Loading...Loading...